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Preface

During my internship at the IBM T.J. Watson Research Center in fall 2010 I studied recent

papers that may be suitable for an implementation for CPLEX, one of the state-of-the-

art optimization suites. The main topic was cutting planes because an implementation

was relatively easy to create without requiring specific (and secret) internal information.

The first article which I worked on was by Andersen and Weismantel and I knew it from

Kent’s talk at the Integer Programming and Combinatorial Optimization Conference 2010

in Lausanne. A very fascinating property of their cut generation method was that they

had complete control over zero coefficients. One year later I must admit that this is not

quite true.

Eventually, Andrea Lodi convinced me to implement the lift-and-project method in

a way which Bonami discovered in 2010. In the remainder of the internship I became

familiar with the method and got a feeling about decent split selection strategies and

solving time. The results were very typical: A significantly smaller branch & bound tree,

but longer computation times. One reason was that some of the generated cuts were

relatively dense.

These two highlights inspired me to write my thesis about sparsity. It satisfied my

desire for a topic which requires programming and was also promising because of its

suspected importance (as a reason for poor performance of my cuts) as well as missing

previous work in literature.

I owe many thanks to my internship advisor Laci Ladanyi who guided me through all

the pitfalls of coding with CPLEX as well as Tobias Achterberg, Andrea Lodi, Andrea

Tramontani, and Roland Wunderling for their helpful comments. I also thank Mary

Fenelon for organizing my intership.

Just as much as the above people I want to thank Prof. Dr. Volker Kaibel. As my

main advisor in Magdeburg he did not only make the internship possible. He also trusted

me to select a good topic on my own. Although the affinity to his favorite subjects is
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relatively small our discussions about my work were very fruitful.

Working on the topic was sometimes frustrating and challenging on the one hand, but

often very satisfying on the other hand. I’m also very thankful to my girlfriend Sarah for

suffering from my permanent desire to work on my computer. The same goes for Stefanie

Kabelitz who had to listen to the mathematical details a couple of times. Finally, I want

to thank my parents Gabi and Karl-Heinz for enabling me to study and in addition to

them, Julia Gebhardt, Georg Naumann, Bernhard Spitz, and Tobias Walter for helpful

comments on earlier versions of this thesis.
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Chapter 1

Introduction

This thesis is about a numerical property of a certain cutting plane method in mixed-

integer (linear) programming. A linear program (LP) is a problem for which we want

to optimize a linear objective function over an intersection of (finitely many) linear in-

equalities and equations. The set of feasible points is a polyhedron, i.e., the intersection

of finitely many halfspaces. Every ≥-inequality can be scaled by −1 and every equation

can be modeled by two inequalities. If not stated differently, we can assume without loss

of generality that polyhedra are given in the form

P = P≤(A, b) := {x ∈ Rn : Ax ≤ b}

Here, R denotes the real numbers, A is a real m×n matrix over R, b ∈ Rm and ≤ has to be

read component-wise. In other contexts, one may also demand nonnegativity constraints,

i.e., x ∈ Rn
+. For LPs we always assume a minimization problem of the following type.

min cᵀx such that x ∈ P

Assuming only rational input there are several algorithms to solve LPs. The ellipsoid

method runs in polynomial time, while for the de-facto standard method, the famous

simplex algorithm, no polynomial time version is known. A third kind, so-called barrier

methods can also be made to run in polynomial time. Efficient in practice are only the

last two. For further reading about polyhedra we recommend [38] and for complexity

theory [29].

1



1 2 3 4 5 6 7

1

2

3

4

0

polyhedron P

feasible set F

PI = conv(F )

cutting plane

Figure 1.1: A 2-dimensional mixed-integer program (MIP).

A mixed-integer program (MIP) is an LP with integrality restrictions imposed on a

subset I of [n] := {1, . . . , n}. We call a feasible point x integral if xi ∈ Z for i ∈ I,

although this notation is not quite right. A very important observation is that the convex

hull of all feasible points, denoted by PI , is a polyhedron again (see Figure 1.1). PI is

(usually strictly) contained in P . This class of problems does not belong to the class of

convex optimization problems and is NP-hard in general. Nevertheless, there are efficient

methods to solve problems of decent size in a couple of minutes. The most important

concept is that of a linear relaxation which means that we drop the integrality constraints.

This relaxation can be strengthened by reducing the set of feasible points without loosing

an integer point. A widely used way of strengthening is via cutting planes. They are

additional inequalities which cut off points which are feasible for the LP but infeasible

for the MIP. An important concept is that of a separation problem. It means that given

a MIP and some LP-feasible but nonintegral point, we have to find a valid cutting plane

which cuts off this point or we have to determine that no such cut exists (from a given

class of cuts).

The third concept is that of sparsity. An LP row (an inequality or equation) is said

to be sparse if her coefficient vector a has not too many nonzero entries. Mathematically

speaking, the support supp(a) := {i ∈ [n] : ai 6= 0} shall contain only few indices. The

importance of sparsity comes from practice. LP solvers (which are invoked many times

while solving MIPs) simply exploit sparsity by “looking” at nonzero entries only. Hence,

a dense cutting plane may strengthen the relaxation, but slow down the future solving

process, making its use unattractive.
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As the reader may have guessed from the title we will focus on lift-and-project cut-

ting planes, although other classes are considered later too. Lift-and-project cuts were

introduced by Egon Balas, Sebastián Ceria, and Gérard Cornuéjols in their seminal paper

in 1993. Before, some basic concepts were already known but many experts in this field

did not believe in the practical usefulness of cutting planes. Although Gomory Mixed-

Integer (GMI) cuts were more successful for practical implementations, lift-and-project

was never forgotten and experienced a boom in 2003. In that year, Egon Balas had a

Ph.D. student, namely Michael Perregaard, who was working on lift-and-project. They

were able to show a precise correspondence between lift-and-project and other classes of

cuts. This led to much insight and some very attractive features of lift-and-project. For

the history-interested reader we want to mention Sebastián Ceria’s nice article about the

history of lift-and-project [19].

Outline. Our main work is separated into four chapters. In Chapter 2 we start with the

lift-and-project method itself. We will go along the historic path until we have the so-called

Cut Generating LP (CGLP) available. Then we thoroughly investigate the normalization

constraints which are necessary to use the CGLP for cut separation. After deriving some

basic properties we will present different formulations which can be found in literature

and we will show how the obtained cuts can be strengthened further. Chapter 3 connects

lift-and-project with other classes of cuts and the well-known relaxation hierarchies. It

was put separate because of its minor importance for our sparsity investigations. We

present some important techniques which are helpful for implementations in Chapter 4.

Among them are ways to make certain features like cut strengthening work or to reduce

the computational effort. In Chapter 5 we eventually focus on the sparsity structure. Our

analysis is based on several experiments which have the purpose to:

• verify a correlation between LP solving time and sparsity,

• measure the sparsity of lift-and-project cutting planes, taking different parameters

into account.

• point out potential improvements which might help to make cuts sparser or show

limitations.

The experiments are described and the results are displayed and interpreted.

3



Notations. We now introduce some necessary mathematical concepts. For any nonneg-

ative number n ∈ Z+ we denote by [n] the set {1, . . . , n} and by [n]0 the augmented set

[n] ∪ {0}. As we do not define the groundset of all matrices and vectors everywhere we

assume them to be of appropriate sizes. The same holds for O (the zero vector) and 1

(the vector consisting of only 1’s). For an m× n matrix A we denote by Ai,j the entry in

the i-th row and j-th column. We furthermore allow the placeholder ∗ for i or j, meaning

the complete row or column. For example, Ai,∗ is the i-th row (as a row vector). By Aᵀ

we denote transposition of matrices and vectors.

We will use Lp norms, denoted by ||.||p, for p ∈ {1, 2,∞}. For any x ∈ R, |x|, bxc,
and dxe, denote the absolute value, x rounded down to the next integer, and x rounded

down, respectively.

By conv(S) := {λs1 + (1 − λ)s2 : s1, s2 ∈ S ∧ λ ∈ [0, 1]} we denote the convex hull

of some set S and by cone(S) := {λs : s ∈ S ∧ λ ≥ 0} the cone generated by S.

4



Chapter 2

The Lift-and-Project Method

In this chapter we focus on the lift-and-project method itself. The first two sections are

concerned with the derivation of the method. First we describe the original lift-and-

project approach followed by another description using disjunctive programming. Then

we specify the set of valid inequalities more precisely. As the latter set is a cone it must

be truncated by a so-called normalization constraint. There are several of these and we

present them along with their geometrical meaning in the dual space. Furthermore, we

propose another one which is supposed to yield sparser cutting planes. This is our first

own contribution in this work. In literature certain formulations of the cone are used

and we link them together in the fourth section. We finish this chapter by presenting the

standard way of strengthening the cutting planes.

2.1 Derivation of the Method

First we derive lift-and-project via the original idea of lifting the LP relaxation in a higher

dimensional space where one is able to tighten it conveniently. After this step one can

either work in this space or project it back. Two such approaches for 0-1-mixed-integer

programming (a MIP where all integer variables are binary) have been suggested before

lift-and-project came up.

In the first approach Sherali and Adams propose to multiply Ax ≤ b by several 0-1

variables xj or their complements (1 − xj) and project back to the original space (see

[39], [40]). The second is by Lovász and Schrijver. For every j ∈ I they consider all the

inequalities xj(Ax) ≤ xjb, (1 − xj)(Ax) ≤ (1 − xj)b and collect them. After linearizing

5



the number of 0-1-variables is squared and the number of constraints also increased very

much. Their main result in [33] is that applying this process n times yields PI .

The lift-and-project method is equivalent to the Lovász-Schrijver approach except that

it is only applied to a single variable xj. Hence, the number of variables in the larger

space is only twice the original number. It was introduced in [14] for 0-1-mixed-integer

problems. We will work on our polyhedron P := P≤(A, b) with A ∈ Rm×n, b ∈ Rm

and a set I ⊆ [n] of binary variables. We assume that the (relaxed binary) constraints

0 ≤ xi ≤ 1 (i ∈ I) are contained in Ax ≤ b.

Then the following procedure strengthens the LP relaxation, i.e., produces a polyhe-

dron Pk with PI ⊆ Pk ⊆ P .

Algorithm 2.1 The Historical Lift-and-Project Method

1. Select an index k ∈ I among the binary variables of P≤(A, b).

2. Replace (Ax− b) ≤ 0 by the following (nonlinear) system.

xk(Ax− b) ≤ 0
(1− xk)(Ax− b) ≤ 0

(2.1)

3. Linearize (2.1) by substituting yi for xk · xi for all i ∈ [n] with i 6= k and xk for x2k.
Call the resulting polyhedron M (k) = M (k)(P ).

4. Project M (k)(P ) onto the x variables and call the resulting polyhedron P (k).

Our first observation is that this method does not remove feasible points. In fact, xk

and (1 − xk) are both nonnegative and thus (2.1) is still a relaxation of PI . Obviously,

substitution of yi does not change any structure. Hence, the only part where some (frac-

tional) points may become infeasible is substitution of x2k by xk. The latter is valid for

binary values which implies PI ⊆ P (k). The other important fact is P (k) ⊆ P and is

proved formally in the next section.

We will provide more details about the polyhedral properties of the constructed poly-

hedron P (k) in Chapter 3. There we will show that the same property holds which is

was also proved for the Lovász-Schrijver construction. We investigate the strength of the

procedure (applied to all k ∈ I) compared to other cutting plane closures.

6



2.2 Disjunctive Programming

We now present another characterization of P (k) from the first section. It also appeared

in [14] in Theorem 2.1. In the remainder of this section we show how to get a compact

formulation of the set of valid inequalities for P (k). The latter part is known as disjunctive

programming and was introduced by Balas in [8],[9].

We start by stating the announced characterization of P (k) and repeating the proof

by Balas et al..

Theorem 2.1 (Balas, Ceria, and Cornuéjols, 1993). Let P (k) be as in Algorithm 2.1, and

let P0 := P ∩ {xk = 0}, P1 := P ∩ {xk = 1}. Then P (k) = conv (P0 ∪ P1).

Proof. For the “⊇” part let x be an arbitrary point in P ∩{xk = 0, 1}. Define yi := xi ·xk
for i 6= k. Then (x, y) is valid for M (k)(P ) since x2k = xk.

To show “⊆” we distinguish three cases:

Case 1: P0 = ∅. As P (k) is closed the inequality xk > ε is valid for P (k) for some ε > 0.

This implies that (1− xk)(xk − ε) ≥ 0 is satisfied by any x satisfying (2.1). Replacing

x2k = xk it follows that xk ≥ 1 is valid for P (k). This together with P (k) ⊆ P implies

P (k) ⊆ P1 = conv(∅ ∪ P1).

Case 2: P1 = ∅. In an analogous way we can prove the validity of xk ≤ 0 for P (k).

This implies P (k) ⊆ conv(P0 ∪ ∅).
Case 3: P0 6= ∅ and P1 6= ∅. Let αᵀx ≤ β be a valid inequality for conv (P0 ∪ P1).

Since αᵀx ≤ β is valid for P0 there exists λ ≥ 0 such that αᵀ + λxk ≤ β is valid for P

(lifting of inequalities). Similarly, there exists µ ≥ 0 such that αᵀx+ µ(1− xk) ≤ β is

valid for P . Now any x satisfying (2.1) must also satisfy (1−xk)(αᵀx+λxk−β) ≤ 0 and

xk(α
ᵀx+µ(1−xk)−β) ≤ 0. Adding both inequalities yields αᵀx+(λ+µ)(xk−x2k) ≤ β.

After setting x2k = xk the validity of αᵀx ≤ β for M (k)(P ) and for P (k) is clear.

Both directions together finish the proof.

For the remainder of this thesis we can now forget about the nonlinear construction

in Algorithm 2.1. An example is depicted in Figure 2.1. Furthermore, we can work in the

more general context where a polyhedron P≤(A, b) (not necessarily with [0, 1]-variables)

is given. Instead of an elementary split disjunction (xk ≤ 0) ∨ (xk ≥ 1) we now allow

arbitrary split disjunctions (πᵀx ≤ π0) ∨ (πᵀx ≥ π0 + 1) for π ∈ Zn where πj = 0 for

all j /∈ I and any π0 ∈ Z. This results in P being split into P0 := P ∩ {πᵀx ≤ π0} and

P1 := P ∩ {πᵀx ≥ π0 + 1}. Then our new relaxation is conv (P0 ∪ P1).

7



Figure 2.1: The set conv (P0 ∪ P1) for a disjunction.

Disjunctive programming in our context is the optimization over unions of polyhe-

dra. In their seminal paper Balas, Ceria, and Cornuéjols referred to the following lifting

theorem from [8], specialized to the union of two polyhedra.

Theorem 2.2 (Balas, 1974). Let Pi = P≤(C(i), d(i)) for i = 1, 2 be two nonempty poly-

hedra in Rn. Then conv(P0 ∪ P1) is the set of x ∈ Rn for which there exist vectors

x(1), x(2) ∈ Rn and y(1), y(2) ∈ R+ such that

C(1)x(1) ≤ d(1)y(1)

C(2)x(2) ≤ d(2)y(2)

x(1) + x(2) = x

y(1) + y(2) = 1

(2.2)

Note, however, that we assumed P0, P1 6= ∅ which does not always hold. Instead of

applying more techniques in order to verify the correctness of the formulation in this case

we will now derive a compact description of the projection onto the x variables. Later we

will analyze this projection thoroughly and also prove that it yields valid cutting planes

even if P0 or P1 are empty.

8



For this we first apply Theorem 2.2 to our split polyhedron.

Corollary 2.3. Let P = P≤(A, b) be a polyhedron and (πᵀx ≤ π0) ∨ (πᵀx ≥ π0 + 1) be a

split disjunction. Then conv (P0 ∪ P1) equals the projection of

Ax(1) ≤ by(1)

πᵀx(1) ≤ π0y
(1)

Ax(2) ≤ by(2)

−πᵀx(2) ≤ −(π0 + 1)y(2)

x(1) + x(2) = x

y(1) + y(2) = 1

y(1), y(2) ≥ 0

⇔

Ax(1) − by(1) ≤ 0

πᵀx(1) − π0y(1) ≤ 0

Ax(2) − by(2) ≤ 0

−πᵀx(2) + (π0 + 1)y(2) ≤ 0

x− x(1) − x(2) = 0

y(1) + y(2) = 1

−y(1) ≤ 0

−y(2) ≤ 0

(2.3)

on the x variables.

Our next goal is to describe the projection. For that we need some standard machin-

ery. We start with the Farkas’ Lemmata which give characterizations whether a certain

polyhedron is empty or not.

Lemma 2.4 (Farkas’ Lemmata). The following statements hold for A ∈ Rm×n and b ∈
Rm:

(a) The system Ax ≤ b has a solution x ∈ Rn if and only if for every y ∈ Rm
+ with

yᵀA = 0 the inequality yᵀb ≥ 0 holds.

(b) The system Ax ≤ b has a solution x ∈ Rn
+ if and only if for every y ∈ Rm

+ with

yᵀA ≥ 0 the inequality yᵀb ≥ 0 holds.

(c) Either the system Ax ≤ b has a solution x ∈ Rn or there exists y ∈ Rm
+ with yᵀA = 0

and yᵀb = −1.

Proofs can be found in [38] where (a) corresponds to Corollary 7.1e, (b) to Corol-

lary 7.1f, and (c) is just a reformulation of (a). While (c) will be helpful later we now use

(a) for the following projection theorem. Part (b) is not used directly, but illustrates the

result for the variables y(1), y(2) in (2.3).
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Theorem 2.5. Let P := {(x, y) ∈ Rn × Rp : Gx + Hy ≤ s}. The projection onto the

x-space is given by {x ∈ Rn : λᵀGx ≤ λᵀs for all λ ∈ Rm
+ with λᵀH = 0}

Proof. We write the projection as {x ∈ Rn : ∃y ∈ Rm with Gx + Hy ≤ s}. Let x ∈ Rn.

By Lemma 2.4 (a), Hy ≤ s−Gx has a solution y ∈ Rm if and only if λᵀ(s−Gx) ≥ 0 for

every λ ∈ Rm
+ with λᵀH = 0.

The final step is to use Theorem 2.5 in order to project the polyhedron given by

(2.3) on the x variables. The row multipliers are (wᵀ, w0, v
ᵀ, v0, α

ᵀ, β, λ1, λ2). The valid

inequalities are 

w

w0

v

v0

α

β

λ1

λ2



ᵀ

0

0

0

0

In

0

0

0


x ≤



w

w0

v

v0

α

β

λ1

λ2



ᵀ

0

0

0

0

0

1

0

0


⇔ αᵀx ≤ β (2.4)

where w, v ∈ Rm
+ , w0, v0, λ

1, λ2 ∈ R+ and α ∈ Rn, β ∈ R are unconstrained as they are

multipliers for equations. The constraints for the multipliers are

w

w0

v

v0

α

β

λ1

λ2



ᵀ

A −b
πᵀ −π0

A −b
−πᵀ (π0 + 1)

−In −In
1 1

−1

−1


= 0. (2.5)

After simplification and setting up the goal to maximize the violation of a given point x̂
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this yields the cut generating linear program:

min β − αᵀx̂

s.t. αᵀ = wᵀA+ w0π
ᵀ

αᵀ = vᵀA− v0πᵀ

β ≥ wᵀb+ w0π0

β ≥ vᵀb− v0(π0 + 1)

w, v ∈ Rm
+

w0, v0 ∈ R+

(CGLP)

The associated polyhedron is a cone C=≥ and it is unbounded once a nontrivial cut (α 6= O)

exists. This makes sense since any inequality αᵀx ≤ β can be scaled without changing

its geometry. In order to optimize over this set we need to truncate it. This amounts to

adding a normalization constraint and is discussed later.

In the above description we assumed nonempty P0, P1 in order to make the convex-

ification work properly. We now consider the case where this does not hold and answer

the question whether the constructed inequalities are still valid. The following lemma

characterizes the region that is cut off.

Lemma 2.6. Let P = P≤(A, b) with A ∈ Rm×n and b ∈ Rm be a given polyhedron,

π0 ∈ Z, and π ∈ Zn be a split. Let furthermore x̂ be in the polyhedron P but cut off by

some αᵀx ≤ β from C=≥ .

Then πᵀx̂ ∈ (π0, π0 + 1) and in the corresponding solution to (CGLP), w0 and v0 are

positive.

Proof. Let (w,w0, v, v0, α, β) be a solution to the cut constraints. From αᵀx > β we derive

(wᵀA+ w0π
ᵀ) x̂ > β ≥ wᵀb+ w0π0

(vᵀA− v0πᵀ) x̂ > β ≥ vᵀb− v0(π0 + 1).

As x̂ ∈ P we have Ax̂ ≤ b, i.e., −wᵀAx̂ ≥ −wᵀb and −vᵀAx̂ ≥ −vᵀb. Adding both

inequalities to the above we observe

w0π
ᵀx̂ > w0π0 and − v0πᵀx̂ > −v0(π0 + 1)

and conclude that w0, v0 > 0. Dividing by both yields π0 < πᵀx̂ < π0 + 1.

11



As the constraints w0, v0 ≥ 0 were not used in the proof we can conclude:

Remark 2.7. Lemma 2.6 also holds when the cut αᵀx ≤ β is a solution to C=≥ where the

nonnegativity constraints for w0 and v0 have been removed.

Lemma 2.6 also proves the validity of the lift-and-project inequalities regardless of

whether P0 or P1 may be empty sets.

Corollary 2.8. The lift-and-project method only removes points in the interior of the

split from the given polyhedron. Therefore it never cuts off an integer point.

It is instructive to consider the case of P0 = ∅ explicitly. Here, the Farkas Lemma

(Lemma 2.4 (c)) provides us with nonnegative multipliers λ ∈ Rm
+ , µ ∈ R+ with λᵀA +

µπᵀ = O and λᵀb+ µπ0 = −1. That is, the inequality Ox ≤ −1 can be derived as a valid

inequality for P0. We observe that (λᵀ, µ− 1,O, 1,−π0 − 1,−πᵀ) is a feasible solution to

(CGLP) showing that πᵀx ≥ π0 + 1 is a lift-and-project inequality:

αᵀ = wᵀA+ w0π
ᵀ = λᵀA+ (µ− 1)πᵀ = −µπᵀ + (µ− 1)πᵀ = −πᵀ

αᵀ = vᵀA− v0πᵀ = O− πᵀ = −πᵀ

β ≥ wᵀb+ w0π0 = λᵀb+ (µ− 1)π0 = −1− µπ0 + µπ0 − π0 = −π0 − 1

β ≥ vᵀb− v0(π0 + 1) = −π0 − 1

It is easy to see that πᵀx ≤ π0 is a lift-and-project inequality if P1 = ∅ by symmetric

arguments. The resulting cut is depicted in Figure 2.2.

Figure 2.2: A lift-and-project inequality if P0 = ∅.
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2.3 Normalization Constraints

In order to truncate the feasible region of the CGLP one must add a so-called normaliza-

tion constraint. The choice of a good normalization is very important because there is a

large number of possible lift-and-project cutting planes (see Figure 2.3). We now present

the most important ones that are studied in literature. We also suggest another one that

(in theory) tries to generate sparser cuts.

Figure 2.3: Different possible cuts for a disjunction.

We start by dualizing the CGLP which gives insightful geometric interpretations of

the various normalization constraints. Note that the CGLP’s variables are in fact row

multipliers. This is why we call it the dual and call its dual linear program the primal.

min β − x̂ᵀα
s.t. −α + Aᵀw + πw0 = 0

−α + Aᵀv − πv0 = 0

β − bᵀw − π0w0 ≥ 0

β − bᵀv + (π0 + 1)v0 ≥ 0

w, v ∈ Rm
+

w0, v0 ∈ R+

(D)
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Its dual is almost the same as the formulation in the lifted space except that the point

x̂ is the point which we want to separate. The primal problem reads

max 0

s.t. Ax(1) ≤ by(1)

πᵀx(1) ≤ π0y
(1)

Ax(2) ≤ by(2)

πᵀx(2) ≥ (π0 + 1)y(2)

x(1) + x(2) = x̂

y(1) + y(2) = 1

y(1), y(2) ∈ R+

. (P)

Without normalizing the dual unboundedness is reflected in an infeasible primal problem

(P) (see Figure 2.1 on page 8). Bounding the former corresponds to relaxing the latter

in order to make it feasible. Different normalization constraints correspond to different

types of relaxations on the primal side which we will present. The precise analysis of this

correlation was done in [21].

2.3.1 αp-Normalization Constraints

When they proposed lift-and-project cutting planes for the first time Balas, Ceria, and

Cornuéjols [14] worked with normalizations that bound the coefficients or the right-

hand side. We start with what they called the LHS normalization. The general αp-

normalization constraint reads

||α||p ≤ 1. (αp-NC)

The only specializations which admit a linear formulation are for p = 1 and p =∞.

n∑
i=1

|αi| = 1 (α1-NC)

|αi| ≤ 1 (∀i ∈ [n]) (α∞-NC)
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According to [14], the extreme points of the truncated cone do not always correspond to

extreme rays of C=≥ . On the dual side we observe the following. To add the constraints∑
|αi| ≤ 1 we have to introduce variables α+, α− ∈ Rn

+ with α = α+ − α−. The normal-

ization is then 1
ᵀα+ +1

ᵀα− ≤ 1. In their article [21], Ceria and Soares refer to a theorem

stating that dualizing an LP with an additional (not necessarily linear) constraint ||.|| ≤ 1

results in an objective function with a term ||.||∗ where the ∗ indicates the dual norm.

For us it is only relevant that ||.||1 and ||.||∞ are dual to each other. We show only the

specialized results here.

Proposition 2.9. The relaxed version of (P) corresponding to α1-NC reads

min ||x̂− x∗||∞
s.t. Ax(1) ≤ by(1)

πᵀx(1) ≤ π0y
(1)

Ax(2) ≤ by(2)

πᵀx(2) ≥ (π0 + 1)y(2)

x(1) + x(2) = x∗

y(1) + y(2) = 1

y(1), y(2) ∈ R+

. (2.6)

Proof. We add the constraints α = α+−α− and 1
ᵀα+ +1

ᵀα− ≤ 1 with duals µ ∈ Rn and

π ∈ R−. When dualizing and making it a minimization problem −π enters the objective

while x(1) + x(2) = x̂ is relaxed to x(1) + x(2) = x̂ + µ. Furthermore, Inµ + 1π ≤ 0 and

−In + 1π ≤ 0 are added. After scaling π by −1 and substituting (x̂+ µ) by x∗ we obtain

the result.

Proposition 2.10. The relaxed version of (P) corresponding to α∞-NC reads

min ||x̂− x∗||1
s.t. Ax(1) ≤ by(1)

πᵀx(1) ≤ π0y
(1)

Ax(2) ≤ by(2)

πᵀx(2) ≥ (π0 + 1)y(2)

x(1) + x(2) = x∗

y(1) + y(2) = 1

y(1), y(2) ∈ R+

(2.7)

15



Proof. Here we add the duals λ+, λ− ∈ Rn
− for the constraints α ≤ 1 and−α ≤ −1. Again,

we dualize and make it a minimization problem. Then the objective is −1ᵀλ+ − 1
ᵀλ−

while x(1) + x(2) = x̂ is relaxed to x(1) + x(2) = x̂+ λ+− λ−. We substitute (x̂+ λ+− λ−)

by x∗ and obtain the result.

Figure 2.4: Find x∗ ∈ conv (P0 ∪ P1) with min ||x̂− x∗||q.

The interpretation is the same for both. In order to make (P) feasible we relax the

constraint that x̂ must be in conv (P0 ∪ P1). In fact, the LPs in Propositions 2.9 and 2.10

look for a point x∗ ∈ conv (P0 ∪ P1) such that the distance between x̂ and x∗ is mini-

mized. The norm used for the distance is the dual to the norm used in the normalization

constraint. Figure 2.4 illustrates the interpretation.

The derivation of a dual solution (a cut) from a given primal solution is not easily

done for every normalization. Here, deriving a cut from x∗ involves subgradients (see [21])

but is at least possible. But from this we can observe easily that such a cut is tight at

x∗. With this in mind, in some sense, the optimal solutions to the corresponding CGLPs

yield geometrically deepest cuts.

16



2.3.2 β-Normalization Constraint

The second kind of “primal” normalization constraints is the β-normalization constraint

|β| = 1. (β-NC)

It was also introduced in [14] and its geometry analyzed in [21]. Again, to get some insight,

we investigate the corresponding relaxation of (P). This is done for the constraint β = β̂

with a dual variable λ ∈ R. The next proposition states the resulting primal problem.

Figure 2.5: Find scaled x̂ that is in conv (P0 ∪ P1).

Proposition 2.11. The relaxed version of (P) corresponding to β-NC reads

max β̂(1− y(1) − y(2))
s.t. Ax(1) ≤ by(1)

πᵀx(1) ≤ π0y
(1)

Ax(2) ≤ by(2)

πᵀx(2) ≥ (π0 + 1)y(2)

x(1) + x(2) = x̂

y(1), y(2) ∈ R+

(2.8)
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Proof. We only have to introduce a single dual variable λ ∈ R for the equation β = β̂.

The original constraint y(1)+y(2) = 1 is relaxed to y(1)+y(2)+λ = 1 and the new objective

is β̂λ. Substituting λ finishes our proof.

Obvious from Proposition 2.11 is that we are looking for a factor γ = 1/
(
1− y(1) − y(2)

)
such that γx̂ ∈ conv (P0 ∪ P1). Depending on the sign of β̂ we are looking for a minimal

γ > 1 or a maximal γ < 1. Also interesting is that the relaxed primal problem is still

infeasible if x̂ /∈ cone (conv (P0 ∪ P1)).

2.3.3 Trivial Normalization Constraint

The other category of normalization constraints is based on the idea of bounding the mul-

tipliers w,w0, v, and v0. All of the following truncations have a very attractive property:

There is a correspondence between the bases of (CGLP) and the bases of the original LP.

We provide some more details in Section 4.4.5. The simplest version of this kind is the

equation

w0 + v0 = 1 (TNC)

and is called the trivial normalization constraint. The reason is that the simple inter-

section cut (see Section 3.2) is already an optimal solution. The latter can be obtained

directly from the LP tableau. However, in Section 4.4.3 we will explain how Bonami was

able to make it usable. This normalization is the last that was introduced by Balas, Ceria,

and Cornuéjols in [14]. As in the previous cases we state the relaxed version of (P).

Proposition 2.12. The relaxed version of (P) corresponding to TNC reads

max λ

s.t. Ax(1) ≤ by(1)

πᵀx(1) + λ ≤ π0y
(1)

Ax(2) ≤ by(2)

πᵀx(2) − λ ≥ (π0 + 1)y(2)

x(1) + x(2) = x̂

y(1) + y(2) = 1

y(1), y(2) ∈ R+

(2.9)
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Figure 2.6: Shrink the split until x̂ belongs to the convex hull.

The geometric meaning of this normalization gets clearer if we consider an elementary

split disjunction, i.e., π = ek and π0 = 0. The disjunction itself is relaxed to xk ≤ −λ and

xk ≥ 1 + λ (note that here λ is usually negative.) However, x̂ does not need to be in one

of the two relaxed polyhedra (as Figure 2.6 might suggest) but in their convex hull.

2.3.4 Standard Normalization Constraint

We now turn to the state-of-the-art normalization constraint. It was suggested in [21]

and first tested in [20].

m∑
i=1

wi + w0 +
m∑
i=1

vi + v0 = 1 (SNC)

Its associated primal problem is stated in the next proposition.
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Proposition 2.13. The relaxed version of (P) corresponding to SNC reads

max λ

s.t. Ax(1) + λ ≤ by(1)

πᵀx(1) + λ ≤ π0y
(1)

Ax(2) + λ ≤ by(2)

πᵀx(2) − λ ≥ (π0 + 1)y(2)

x(1) + x(2) = x̂

y(1) + y(2) = 1

y(1), y(2) ∈ R+

. (2.10)

This time all constraints of the two polyhedra P0 and P1 are relaxed at the same time

until x̂ is contained in one of the relaxations. The relaxation is illustrated in Figure 2.7.

The standard normalization constraint highly depends on the representation of a cer-

tain inequality Ai,∗x ≤ bi in that a scaled version of a row (scaled by some λ > 1) is

preferred over the original row. This happens because it needs a smaller multiplier to get

the same result.

If we interpret the values of the multipliers as a resource with capacity equal to 1 we

will (on average) use approximately half of it for w and half of it for v. This means that

the resulting cut is almost a convex combination of some inequalities of Ax ≤ b scaled

by 1/2. The scaling factor in turn means that incorporating a generated lift-and-project

cut into another lift-and-project cut is penalized. This fact is considered as a reason that

with the SNC the rank of the lift-and-project inequalities remains small even after several

rounds of cut generation. Because typical MIPs usually have sparse rows rank 1 cuts with

a small dual support (a small number of positive multipliers) are sparse as well.

2.3.5 Euclidean Normalization Constraint

Sometimes it is not helpful that the SNC depends on the representation of the polyhe-

dron. Fischetti et al. introduced the so-called Euclidean Normalization Constraint in [27]

to address this problem. They scaled each summand of the SNC by the norm of the

corresponding inequality coefficient vector and obtained

m∑
i=1

||Ai,∗||2(wi + vi) + ||π||2(w0 + v0) = 1. (ENC)
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Figure 2.7: Enlarge the two polyhedra until x̂ belongs to the convex hull.

Note that the geometric interpretation is the same as for the SNC except that the

inequality-defining hyperplanes of the two polyhedra are “moved with a different speed”.

2.3.6 Density Normalization Constraint

We present a variant of the Euclidean normalization constraint. Instead of making the

choice of all constraints fair in the ENC we want to penalize dense constraints.

m∑
i=1

|supp (Ai,∗) | · ||Ai,∗||2(wi + vi) + ||π||2(w0 + v0) = 1 (DNC)

We do not call it Sparsity Normalization Constraint because of the ambiguity of (SNC).

The interpretation in terms of resources is simple. The CGLP is allowed to incorporate

two sparser inequalities instead of a single dense inequality with the same average of

multipliers.
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2.4 Different versions of the CGLP in Literature

When reading about lift-and-project cuts for the first time one may get confused because

there are several different formulations for the CGLP. Therefore we present these variants

how they correspond to each other and justify their existence. We start by restating the

defining system for C=≥ .

αᵀ = wᵀA+ w0π
ᵀ

αᵀ = vᵀA− v0πᵀ

β ≥ wᵀb+ w0π0

β ≥ vᵀb− v0(π0 + 1)

w, v ∈ Rm
+

w0, v0 ∈ R+

(C=≥)

2.4.1 Equations for the Right-hand Side

We now assume that our polyhedron P = P≤(A, b) is bounded in some direction and its

reverse, i.e., there is some vector c ∈ Rn with d1 ≤ cᵀx ≤ d2 for all x ∈ P . We can

combine the two inequalities and get (c− c)ᵀx ≤ d2 − d1. In other words, the trivial

inequality Oᵀx ≤ 1 is always valid for P . This simple fact can be used to enforce equality

in the two β-equations in the CGLP:

αᵀ = wᵀA+ w0π
ᵀ

αᵀ = vᵀA− v0πᵀ

β = wᵀb+ w0π0

β = vᵀb− v0(π0 + 1)

w, v ∈ Rm
+

w0, v0 ∈ R+

(C==)

Proposition 2.14. The two versions (C=≥) and (C==) are equivalent up to scaling of α

and β.

Proof. Obviously, every solution to (C==) is also a feasible for (C=≥).

For the reverse direction let (w,w0, v, v0, α, β) be feasible for (C=≥). Furthermore, let

λ ∈ Rm
+ with λᵀA = O and λᵀb = 1 be multipliers for the normalized trivial inequality

Oᵀx ≤ 1. Then with βw := wᵀb + w0π0 and βv := vᵀb − v0(π0 + 1) we have that
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(w + λ(β − βw), w0, v + λ(β − βv), v0, α, β) is feasible for (C==):

(w + λ(β − βw))ᵀA+ w0π
ᵀ = wᵀA+ w0π

ᵀ = αᵀ

(v + λ(β − βv))ᵀA− v0πᵀ = vᵀA− v0πᵀ = αᵀ

(w + λ(β − βw))ᵀb+ w0π0 = βw + (β − βw) = β

(v + λ(β − βv))ᵀb− v0(π0 + 1) = βv + (β − βv) = β

Scaling of the cut is necessary if we consider a multiplier-based normalization constraint

(like TNC, SNC, ENC, or DNC). As we may add multiples of λ, the multiplier sum

changes and can be made 1 again by scaling.

Proposition 2.15. If in an optimal solution to a normalized C=≥ the point x̂ (resp. x∗ for

αp-NC, β-NC) is not contained in the relaxed versions of P0 or P1 then the β-constraints

are satisfied with equality.

Proof. As x̂ (resp. x∗) is not contained in P0 or P1 it must be a convex combination

with nonzero multipliers. Hence, y(1), y(2) > 0, and, by complementary slackness, the

β-equations are satisfied with equality.

Unfortunately, we do not know what happens if y(1) = 1, y(2) = 0, i.e., x̂ is contained

in the relaxed P0. Hence, we have no proof that optimal solutions to C=≥ correspond to

optimal solutions to C== , assuming the same normalization.

2.4.2 Inequalities for the Cut Coefficients

Another very prominent model is one where P≤(A, b) ⊆ Rn
+ is required implicitly. Here,

the constraints −xj ≤ 0 (j ∈ [n]) can be used in the same manner as the trivial inequality

in the version above.
αᵀ ≤ wᵀA+ w0π

ᵀ

αᵀ ≤ vᵀA− v0πᵀ

β ≥ wᵀb+ w0π0

β ≥ vᵀb− v0(π0 + 1)

w, v ∈ Rm
+

w0, v0 ∈ R+

(C≤≥)

Proposition 2.16. The CGLP cone C≤≥ is equivalent to C=≥ if P≤(A, b) ⊆ Rn
+ and the

normalizations do not depend on the multipliers of the (possibly implicit) −xj ≤ 0 con-

straints.
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Proof. As in the proof of Proposition 2.14, we can use the −xj ≤ 0 constraints “for free”

in order to decrease αw
ᵀ := wᵀA + w0π

ᵀ and αv
ᵀ := vᵀA − v0πᵀ element-wise until they

equal αᵀ.

This also means that if the nonnegativity constraints are contained in Ax ≤ b we can

remove these rows from A and b before feeding them into C≤≥ . Again, if the normalization

depends on the mentioned multipliers we may need to scale the solution afterwards.

2.4.3 Relaxed Multiplier Domains

As observed earlier, we can relax the nonnegativity constraints for w0 and v0. By Re-

mark 2.7, a CGLP solution with negative objective value implies w0, v0 > 0 and it yields

a valid cutting plane αᵀx ≤ β. Note that we must be careful with this relaxation as a

nonnegative objective value may give an invalid inequality. An example can be found in

Remark 4 of [17]. This relaxation can be applied to all CGLP cones mentioned earlier. We

denote them by a zero index, i.e C=≥0, C==0, C≤=0, and C≤≥0. We will use it in Section 4.4.3.

We now observe what happens on the primal side when w0 or v0 are unconstrained. In

(P) we demand that x(1) (resp. x(2)) lie on the hyperplanes πᵀx = π0 (resp. πᵀx = π0+1).

If we want to separate a point that is in the split this is no restriction. Hence, this

relaxation can be used for cut generation.

2.5 A Posteriori Cut Strengthening

Cut Strengthening was introduced in Balas and Jeroslow [11] and is a method to increase

coefficients of a computed lift-and-project cut. The idea is that for an elementary split

disjunction π = ek the cut only uses the integrality of one variable xk. We therefore search

for the best π for fixed multipliers (w,w0, v, v0).

To the best of our knowledge, cut strengthening only works for P ⊆ R+, i.e., our given

multipliers are a solution to

αᵀ ≤ wᵀA+ w0ek

αᵀ ≤ vᵀA− v0ek
β = wᵀb+ w0π0

β = vᵀb− v0(π0 + 1)

24



The cut coefficients verify αj = min{wᵀA∗,j + w0π
ᵀ
j , v

ᵀA∗,j − v0πᵀ
j }. There are two “sug-

gested” coefficients wᵀA∗,j and vᵀA∗,j which are modified by a scaled version of πj. After

the modification the minimum of both must be selected as the cut coefficient.

In order to increase that minimum we can change πj. If done the right way, the smaller

of the “suggested” coefficients increases while the other decreases.

Optimal value

πj

C
o
effi

ci
en

t
va

lu
e

suggested w coefficient
suggested v coefficient
minimum of both

Figure 2.8: Finding an optimal disjunction for component j.

At πj = (vᵀA∗,j − wᵀA∗,j) /(w0 +v0) they coincide, i.e., wᵀA∗,j +w0πj = vᵀA∗,j−v0πj.
If πj /∈ Z, the optimal value is either bπjc or dπje (see Figure 2.8). For bπjc, the minimum

of the coefficients equals wᵀA∗,j + w0bπjc while for dπje it is vᵀA∗,j − v0dπje. Hence, we

observe the following formulas for coefficient strengthening:

α̂j := max{wᵀA∗,j + w0bm̂jc, vᵀA∗,j − v0dm̂je} for j ∈ I
α̂j := min{wᵀA∗,j, v

ᵀA∗,j} for j /∈ I
(2.11)
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Chapter 3

Properties of the Lift-and-Project

Cutting Planes

In the previous chapter we focused on the lift-and-project method and the necessary

aspects for cut generation. The method and the cuts have certain properties which connect

us with other interesting theory. As they are only of minor interest for our implementation-

related purposes we collect them in a separate chapter.

We start by presenting a property already known in the very beginning of lift-and-

project. We go on by showing the embedding of this specific type of cutting planes in the

world of general-purpose cutting planes. The relationships also imply certain statements

about complexity of cut separation. We finish this chapter by describing the known results

and open problems in this field.

As these topics are only partially related to main goals of this work we omit proofs or

even theorems but try to give a rough understanding instead. For the interested reader

we highly recommend to read the mentioned literature.

3.1 Sequential Convexification

When comparing them with the convexification approach from [33] and [40], Balas et al.

proved that the lift-and-project cuts have a theoretically attractive property. The next

theorem and its corollary correspond to their Theorem 2.2 and Corollary 2.3 in [14]. They

only hold for (mixed) 0-1 problems, that is, all integer variables must have 0-1 bounds.
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Let P (k1,...,kt) := P (kt)
(
P (k1,...,kt−1)

)
denote the sequential application of the lift-and-

project procedure to P using disjunctions xki ≤ 0 ∨ xki ≥ 1 for i = k1, . . . , kt.

Theorem 3.1 (Balas, Ceria, and Cornuéjols, 1993). Let (k1, . . . , kt) ∈ [n]t be a sequence

where 0 ≤ xki ≤ 1 is valid for P for every i ∈ [t]. Then

P (k1,...,kt) = conv{x ∈ P : xki ∈ {0, 1} ∀i = 1, . . . , t}. (3.1)

As the proof is not very instructive we skip it here and refer to [14].

Corollary 3.2.

P (1,...,n) = PI (3.2)

This property is known as sequential convexification and means the following: Once

we add all lift-and-project cuts for some variable xk we will never have to consider this

variable again even after applying another lift-and-project iteration for another variable.

Note that the number of lift-and-project cuts is usually exponential in the size of the

problem. Furthermore, we would have to add all cuts and not only those violated by

some LP solution.

3.2 Relation to Basic Intersection and GMI Cuts

In literature, the equivalence between strengthened lift-and-project cuts and Gomory

mixed-integer (GMI) cuts is mentioned very often. Here, we must be very careful with

the terminology as there are different types of GMI cuts. We introduce the necessary

concepts and then state the equivalence results. We won’t repeat the proofs as they are

technical and do not contribute to our goal to give an overview. The most important fact

is that we always consider basic cuts, i.e they are associated to a certain (not necessary

feasible) basis of the LP relaxation.

For the remainder of this section we assume our polyhedra relaxation to be

P = {x ∈ Rn : Ax = b ∧ x ≥ 0}. (3.3)

As always, I ⊆ [n] denotes the set of variables supposed to be integral. We consider a row

from a simplex tableau with respect to a simplex basis B ⊂ [n] and J = [n] \B. Without
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loss of generality, k ∈ B shall index the row and the variable xk which is represented as

xk = bk −
∑
j∈J

ak,jxj. (3.4)

Let f0 := bk − bbkc and fj := ak,j − bak,jc. Then the basic simple intersection cut from

the convex set {x : bbkc ≤ xk ≤ dbke} applied to (3.4) is∑
j∈J

max{ak,j(1− f0),−ak,jf0}xj ≥ f0(1− f0). (3.5)

It originates from the disjunction itself. We observe

xk ≤ bbkc ⇔ bk −
∑

j∈J ak,jxj ≤ bk − f0 ⇔
∑

j∈J ak,jxj ≥ f0

xk ≥ dbke ⇔ bk −
∑

j∈J ak,jxj ≥ bk + (1− f0) ⇔
∑

j∈J −ak,jxj ≥ 1− f0
. (3.6)

As x ≥ 0, the two inequalities can be combined via a component-wise maximum. These

cuts have been introduced in [7]. Such a cut can be strengthened using the integrality of

other variables in I ∩ J . Using the convex set {bbkc ≤ πᵀx ≤ dbke} with

πj :=


bak,jc j ∈ I ∩ J ∧ fj ≤ f0

dak,je j ∈ I ∩ J ∧ fj > f0

1 j = k

0 otherwise

, (3.7)

we obtain the basic Gomory mixed-integer cut (3.8).∑
j∈I∩J
fj≤f0

fj(1− f0)xj +
∑
j∈I∩J
fj>f0

(1− fj)f0xj +
∑
j∈J\I

max{ak,j(1− f0),−ak,jf0}xj ≥ f0(1− f0)

(3.8)

A proof of the dominance over the basic simple intersection cut can be found in [5].

In his paper with Egon Balas (and later in his dissertation [37]), Michael Perregaard

showed a correspondence between basic simple intersection cuts and lift-and-project cuts

with the SNC and a simple disjunction xk ≤ 0 ∨ xk ≥ 1. It was shown only for 0-

1-problems but a generalization to general MIPs is possible. Furthermore, they proved

that the two ways of strengthening are equivalent, i.e., the basic GMI cuts correspond to

29



strengthened lift-and-project cuts. We provide an explanation which is not too technical.

The details along with the proofs can be found in Theorems 4a, 4b and 5 of [13].

Crucial for the equivalence is an index pair (M1,M2) with M1,M2 ⊆ [n] and M1∩M2 =

∅. For the intersection and GMI cuts it indexes a partition of the nonbasic variables

J = M1 ∪M2 according to the sign of a certain tableau row expression. In the lift-and-

project context M1 (resp. M2) indexes the basic variables of w (resp. v). It is possible

that the Mi index variables and inequalities because the latter are all lower bounds and

hence correspond to a single variable.

We sketch how to derive the intersection cut (resp.) GMI cut from a basic solution of

the CGLP with π = ek. Let J := M1 ∪M2 be as above. The theorems in [13] guarantee

that [n] \ J indexes a valid LP basis for the relaxation which contains k. Hence, xk can

be written as a linear combination of xJ . The simple intersection cut from this tableau

row and the same disjunction is equivalent to the cut from the basic CGLP solution.

For the reverse direction we have to find a partition of the nonbasics J in M1 and

M2 satisfying the mentioned sign pattern. Note that this partition does not need to be

unique. Then the variables wM1 , w0, vM2 , v0, α, β form a basis of the CGLP. Furthermore,

αᵀx ≤ β is equivalent to the given intersection cut.

3.3 Elementary Closures and Separation Complexity

The notion of a cutting plane closure is important in order to compare different types

cutting planes. Even though we saw that certain cutting planes are equivalent this is not

always the case. An elementary closure of a certain family of cutting planes is defined

as the intersection of all cuts in the family. We know several such families along with

properties like being a polyhedron. Some of them yield the same closures while others

are contained in another or turned out to be incomparable. In 2000 Cornuéjols and Li

published a very good overview [24] about the elementary closures where they compared 18

closures from literature. They established almost the relationships between these families.

A first result which is now obvious for us is that the lift-and-project closure and the

closure of basic intersection cuts are the same. Their strengthened versions yield a different

closure defined by basic GMI cuts and strengthened lift-and-project cuts. Considering

only tableaus from basic feasible solutions another result is that the elementary closure

(with or without strengthening) is larger. On the other hand, if we generalize GMI cuts

to nonbasic solutions (any row combination of tableau rows) then the obtained closure
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will be strictly smaller. By smaller (resp. larger) we mean that closure C1 is contained in

C2 (resp. vice versa). A smaller closure means that for a certain x̂ there may exist a cut

which cuts deeper in the relaxation which in turn is what we try to accomplish.

The theoretical complexity of separating cuts is very important. An NP-hard separa-

tion problem implies that the search for an efficient (in the sense of polynomial run time)

separation algorithm is impossible if we believe in the conjecture “P 6= NP”. On the

other hand it does not necessarily mean that there is no method which does the separation

quite fast in practice. But the existence of a polynomial time separation algorithm is a

good motivation to look for the latter.

The separation of lift-and-project cuts is very interesting when it comes to complexity

theory. Whether there exists a lift-and-project cut that separates a certain x̂ can be

decided by solving the CGLP for every fractional variable. As linear programming is

possible in polynomial time (see [31]) we obtain a polynomial time separation algorithm.

The complexity of the separation problem for strengthened lift-and-project cuts is an

open question while the separation of the general GMI cuts (not necessarily associated

to a basis) is an NP-hard problem. Solving the CGLP for all fractional variables does

not help because if there is no unstrengthened lift-and-project cut the decision whether

some of the many valid lift-and-project inequalities can be strengthened to cut off x̂ is

nontrivial.
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Chapter 4

Integrating Lift-and-Project in a

MIP-Solver

This chapter is dedicated to the more practical side of lift-and-project. We start with an

informal description of a MIP solver’s structure and refer to more articles and documenta-

tion. In the next two sections we state the typical representation of polyhedra in practice

and describe bound shifting and variable complementing. These are two transformations

which are used to move a polytope into the first orthant. Here we also show how these

affect the CGLP and its possible normalizations. As the computational effort to solve the

CGLP in its most general form is very large we also describe some methods how to reduce

this effort to a moderate amount. We close this chapter by stating the details about our

implementation.

4.1 How a Modern MIP Solver Works

Currently, there are quite a few different MIP solvers available. An overview over the

performance and quality can be found at H. Mittelmann’s benchmark page at [35]. Almost

all of them have common basics and we give a short overview here.

The backbone of a MIP solver is a branch & bound (B&B) algorithm. Typical branch-

ing types are splitting via a disjunction just like in the cutting case or branching on special

ordered sets. Bounding is done by solving a linear relaxation over the restricted set of

constraints. The solver maintains the best known feasible solution (primal bound) and

the smallest objective value (note that we minimize) of all unprocessed branch & bound
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nodes (dual bound). If the objective value of a linear relaxation of some node is greater

than the primal bound this node can be discarded. Of course, if the linear relaxation is

infeasible the node is discarded, too.

In addition to this simple algorithm the state-of-the-art solvers have many more other

ingredients to speed up the solving process. Most of them are cut & branch solvers as

they add cutting planes in the root node, that is, before branching starts. Some are even

branch & cut solvers which means that they also add cuts that are locally valid for a

branching node and its children. Although we will provide some more details about our

cutting plane implementation in Section 4.5 we refer to [41] for further reading about

the general topic. Since some years, also constraint propagation is used to strengthen

the linear relaxation (see [4]). Its idea is that changes in variable domains (e.g. during

branching) are propagated through the problem to influence other variables’ domains. In

order to find a good feasible solution quickly primal heuristics are run frequently (see

[16]). They use gathered information to guess solutions via rounding or solving smaller

subproblems.

There are different modeling languages to translate (combinatorial) optimization prob-

lems into mixed-integer problems (see [30], [32], [28]). These languages often introduce

redundant constraints or unnecessary variables. To cope with these unnecessarily large

models all solvers have at least some mechanisms to simplify MIPs. In addition to the

removal of redundancy unspecified (but implicitly valid) variable bounds are added.

For further reading we recommend [1] for a very good overview.

4.2 Representation of the Linear Relaxation

So far we assumed that our polyhedron is of the form

Ax ≤ b and x ∈ Rn. (4.1)

This is not a suitable representation for a practical implementation. For example, consider

the case of binary variables. For every such variable, the two constraints xk ≤ 1 and

−xk ≤ 0 have to be considered. These simple inequalities are called variable bounds

for obvious reasons. As inequalities are modeled (though not explicitly rewritten) as

equations with a slack variable a so-called ranged row bl ≤ aᵀx ≤ br can be used without

more effort. The reason is that this row needs only one slack variable which has upper and
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lower bounds instead of just one of the two. In the same way equations can be handled by

setting bl equal to br. Note that we still assume a minimization problem. The resulting

representation reads

min cᵀx

s.t. bl ≤ Ax ≤ br

l ≤ x ≤ u

x ∈ Rn

. (4.2)

Of course, we allow values +∞ (resp. −∞) for br and u (resp. bl and l).

All modern implementations of the simplex algorithm actually implement the revised

simplex method. Here, among other issues, sparsity is exploited heavily. Many real-world

problem instances have a sparse matrix A, i.e., many entries are zero. For example,

precedence constraints (for binary variables) have exactly two nonzero entries. Many

combinatorial problems are graph-related and the corresponding linear constraints char-

acterize a local property of the graph or some structure on the graph. This locality implies

that only a small number of variables is concerned for each constraint.

For cutting planes the sparsity of A has an important impact. Many cutting plane

methods derive cuts as linear combinations of already existing inequalities. If the method

tends to select only a small number of inequalities for the linear combination the resulting

cut is also (relatively) sparse. We call this feature dual sparsity because the row multipliers

of the linear combination live in the dual space. Based on this motivation we will formally

define (dual) sparsity later in Section 5.1.

4.3 Bound Shifting and Variable Complementing

Bound shifting means to replace some variable xj by x̃j+γ. In the context of 0-1 problems,

complementing a variable xj means to replace it by 1− x̃j. In a more general context we

define it as flipping the sign of xj as we may apply bound shifting afterwards.

Usually, these two concepts are applied to move a polyhedron P≤(A, b) into the first

orthant (see Sections 2.5 and 4.4.2). This is always possible if there is no free variable.

Otherwise, one has to find a workaround. From a geometry point of view we do not expect

serious changes for the CGLP because the original polyhedron is just mirrored or moved.

To complement a variable xj the solver has to scale A∗,j by−1. A bound shift manifests
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itself as a replacement of b by (̃b− γAj). Note that both procedures retain sparsity of A.

Here, we show how they interact with the CGLP.

Lemma 4.1. Complementing a variable xj does not affect C=≥ if πj is replaced by −πj.
None of the discussed normalization constraints is affected.

Proof. We state the updated CGLP cone which differs from the original (C=≥) only by the

scaled column A∗,j and changed πj.

α̃i = wᵀA∗,i + w0πi (∀i 6= j)

α̃i = vᵀA∗,i − v0πi (∀i 6= j)

α̃j = wᵀ(−A∗,j) + w0(−πj)
α̃j = vᵀ(−A∗,j)− v0(−πj)
β ≥ wᵀb+ w0π0

β ≥ vᵀb− v0(π0 + 1)

w, v ∈ Rm
+

w0, v0 ∈ R+.

(4.3)

We show that a tuple (w,w0, v, v0, α, β) is feasible for (C=≥) if and only if the tuple

(w,w0, v, v0, α̃, β, ) is feasible for (4.3) where α̃i = αi for i 6= j, and α̃j = −αj. The

only changes are in the constraints for αj, where every summand is just scaled by −1. As

x̃∗i = x∗i for i 6= j and x̃∗j = −x∗j , the cuts αᵀx ≤ β and α̃ᵀx̃ ≤ β are the same as the only

difference is αj · xj = (−αj) · (−xj).
Because the multipliers and β remain unchanged the normalization constraints TNC,

SNC, ENC, DNC, and β-NC are not affected. Furthermore, α1-NC and α∞-NC depend

on |αi| which also did not change.

We now turn to the case of shifting bounds, i.e., replacing variable xj by x̃j + γ.

Lemma 4.2. Shifting a variable xj by γ does not affect C=≥ if γπj ∈ Z. Among the

discussed normalization constraints only β-NC is affected.

Proof. First, observe that π̃0 := bπᵀx̃∗c = bπᵀx∗c − γπj as γπj ∈ Z. Again, we state the

updated CGLP cone which differs from the original (C=≥) only by the changed right-hand
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side (b− γA∗,j) and the different π̃0.

αᵀ = wᵀA+ w0π
ᵀ

αᵀ = vᵀA− v0πᵀ

β̃ ≥ wᵀ(b− γA∗,j) + w0(π0 − γπj)
β̃ ≥ vᵀ(b− γA∗,j)− v0(π0 − γπj + 1)

w, v ∈ Rm
+

w0, v0 ∈ R+.

(4.4)

We show that a tuple (w,w0, v, v0, α, β) is feasible for (C=≥) if and only if the tuple

(w,w0, v, v0, α, β̃) is feasible for (4.4) where β̃ = β − γαj. The right-hand sides are

related as follows.

β̃ = max{wᵀ(b− γA∗,j) + w0(π0 − γπj), vᵀ(b− γA∗,j)− v0(π0 − γπj + 1)}
= max{wᵀb+ w0π0 − γ(wᵀA∗,j + w0πj), v

ᵀb− v0(π0 + 1)− γ(vᵀA∗,j − v0πj)}
= max{wᵀb+ w0π0 − γαj, vᵀb− v0(π0 + 1)− γαj}
= max{wᵀb+ w0π0, v

ᵀb− v0(π0 + 1)} − γαj
= β − γαj

The associated cuts are the same:

αᵀx ≤ β ⇔ αᵀx− γαj ≤ β − γαj
⇔

∑
i 6=j

αixi + αj(xj − γ) ≤ β̃

⇔ αᵀx̃ ≤ β̃

Because the multipliers and α remain unchanged the normalization constraints TNC,

SNC, ENC, DNC, α1-NC, and α∞-NC are not affected.

By Lemma 4.1 and Lemma 4.2 we can safely assume P≤(A, b) ⊆ Rn
+ if we use any of

the mentioned normalization constraints, except for β-NC.

We now discuss the case of β-NC. As the right-hand side of the cuts changes the

β-normalization constraint may not be satisfied anymore after performing a bound shift.
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Consider the polytope

P = conv


0

0

4

 ,

1

0

5

 ,

 1

−1

3

 ,

 0

−1

5

 ,

1/2

1/2

6


 . (4.5)

If we remove x̂ = (1/2, 1/2, 6)ᵀ from the defining set we get the extreme points of PI , i.e.,

it is the convex hull of the first four integral points. x̂ is the optimal solution of the linear

program max{z : (x, y, z) ∈ P}. PI has exactly two facets which separate x̂ and both of

them can be obtained by an application of lift-and-project on variable y. They are

−x+ y + z ≤ 4 and 2x− 2y + z ≤ 7 (4.6)

and x̂ violates both by 1. Normalized with β = 1 we have objective values of the CGLP

of 1/4 and 1/7, respectively. The optimal solution is then the first inequality.

Now we consider the polytope P + {(−1, 1, 0)ᵀ} (where + indicates the Minkowski

sum). In other words, we moved P one unit in y direction and one unit in −x direction.

Now, the two possible cuts verify

−x+ y + z ≤ 6 and 2x− 2y + z ≤ 3 (4.7)

The normalized cut violations are now 1/6 and 1/3, that is, the second inequality is

optimal now. Note that the distance from the hyperplanes is 1/
√

3 and 1/3, respectively.

Hence, P is not symmetric in the sense that the choice of the cut was arbitrary. This

example illustrates that the normalization β-NC is not suitable if we investigate cut

separation from a geometry point of view.

4.4 Reducing the Computation Time

The huge size of the CGLP comes from the fact that there are two variables for every

constraint in the original problem. In the general case we have to consider bounds as

usual inequalities, too. On the contrary, only a small number of those multiplier variables

will be nonzero as such a nonzero variable must be basic.

This fact made people think about removing certain multipliers in the hope that they

will be zero in the optimal solution anyway. We present two such ideas from literature.
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When using the TNC along with C=≥0 its dual shrinks to a smaller problem. Another way

of working with an LP which is only as large as the original LP relaxation is to simulate

CGLP pivots in the original tableau. How these two approaches work is shown in the last

parts of this section.

4.4.1 Removing Certain Multipliers

In [12] the authors suggest to use the equivalence to intersection cuts (see Section 3.2) in

order to compute a basic feasible solution to the CGLP. On the one hand it can be used to

warm-start the CGLP to reduce the run time. On the other hand, Balas and Perregaard

suggested to remove certain multipliers after producing the mentioned solution. They

tried to only keep those with negative reduced costs (they used a maximization problem

formulation). This is common practice as the reduced costs are one indicator used the by

simplex algorithm implementation to decide which variables might enter the basis.

4.4.2 Solving in the Subspace of Fractional Variables

Balas et al. were able to prove that it is helpful to solve the CGLP in the space of fractional

variables only. In [14] they described how to lift a locally valid cut to a higher dimensional

space in order to make it globally valid. Such a solution of the original space CGLP can

be obtained by a simple formula.

In practice we have bounds l ≤ x ≤ u for l ∈ Rn ∪ {−∞} and u ∈ Rn ∪ {∞}. The

mixed-integer problem is then

max cᵀx

Ax ≤ b

Ix ≤ u

−Ix ≤ −l

(4.8)
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We define the CGLP cone C=≥(X,U, L) for subsets of variables X ⊆ [n] and subsets of

upper (resp. lower) bounds U (resp. L) ⊆ [n] by

αᵀ
X = wᵀA∗,X + wᵀ

UI|U | − w
ᵀ
LI|L| + w0π

ᵀ
X

αᵀ
X = vᵀA∗,X + vᵀUI|U | − v

ᵀ
LI|L| − v0π

ᵀ
X

β ≥ wᵀb+ wᵀ
UuU − w

ᵀ
LlL + w0π0

β ≥ vᵀb+ vᵀUuU − v
ᵀ
LlL − v0(π0 + 1)

w, v ∈ Rm
+

wU , vU ∈ RU
+

wL, vL ∈ RL
+

w0, v0 ∈ R+

. (C=≥(X,U, L))

Note that C=≥([n], [n], [n]) equals (C=≥) for the above MIP.

Let R ⊆ [n] be the set of variables xi ∈ R that are not tight at any bound, i.e.,

li < xi < ui for all i ∈ R. By complementing variables and bound shifting we can assume

without loss of generality that 0 = li = xi holds for every i /∈ R. We now investigate

C=≥(R,R, ∅) under this assumption.

αᵀ
R = wᵀA∗,R + wᵀ

RI|R| + w0π
ᵀ
R

αᵀ
R = vᵀA∗,R + vᵀRI|R| − v0π

ᵀ
R

β ≥ wᵀb+ wᵀ
RuR + w0π0

β ≥ vᵀb+ vᵀRuR − v0(π0 + 1)

w, v ∈ Rm
+

wR, vR ∈ RR
+

w0, v0 ∈ R+

(C=≥(R,R, ∅))

Suppose we solve C=≥(R,R, ∅) and obtain a cut αᵀ
RxR ≤ β. The next theorem corresponds

to Theorem 3.2 from [14] and shows how to lift this cut back to the original variable space.

Theorem 4.3 (Balas et al., 1993). Let αᵀ
RxR ≤ β be an optimal cut obtained from

C=≥(R,R, ∅) with R ⊇ {i ∈ [n] : 0 < xi < ui}. Then αᵀx ≤ β defined below is a cut that

could have been obtained from C=≥([n], [n], [n]).

αj = min{wᵀA∗,j + w0πj, v
ᵀA∗,j − v0πj} ∀j /∈ R

Proof. Let (w,wR, w0, v, vR, v0, αR, β) be the optimal solution of C=≥(R,R, ∅) and let αwj :=
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wᵀA∗,j + w0πj and αvj := vᵀA∗,j − v0πj. We distinguish two cases for all j /∈ R:

Case 1: αw
j ≤ αv

j . We set wj := 0, wj := 0, vj := 0, and vj := αvj −αwj . For the CGLP

cone C=≥([n], [n], [n]) we observe

αj = wᵀA∗,j + wj − wj + w0πj = αwj + 0 + 0

αj = vᵀA∗,j + vj − vj − v0πj = αvj + 0− (αvj − αwj )

Furthermore, the β-constraints are not changed as the only added nonzero multiplier

is vj which is multiplied by lj = 0.

Case 2: αw
j > αv

j . We set wj := 0, wj := αwj − αvj , vj := 0, and vj := 0. As above, for

the CGLP cone C=≥([n], [n], [n]) we observe

αj = wᵀA∗,j + wj − wj + w0πj = αwj + 0− (αwj − αvj )
αj = vᵀA∗,j + vj − vj − v0πj = αvj + 0 + 0

(4.9)

By the same arguments as in case 1 the β-constraints are not changed.

After setting the variables w,w, v and v on the variables j /∈ R and wR = vR = O, we

conclude that (w,w,w,w0, v, v, v, v0, α, β) is feasible for C=≥([n], [n], [n]).

As we figured out how to lift the cuts the most natural question is whether the lifted

cuts are optimal for the CGLP in in the original space. In their article Balas et al. only

investigated α1-NC, α∞-NC, and β-NC and were able to prove that the answer is positive

for the β-normalization but is negative for the two α-normalizations. To the best of our

knowledge, no analysis for the lifting with respect to the other normalization constraints

was done so far.

In another article [10], Balas works on a different (larger) subspace which may also

involve nonbasic variables that are in some predefined set S ⊂ [n]. In general, this lifting

procedure is not only useful to keep the computational efforts for solving (CGLP) small

but can also applied during branch & bound in order to make locally valid cuts valid for

the global problem.
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4.4.3 Shrinking in Case of the Trivial Normalization Constraint

In the next paragraphs we will specialize on the trivial normalization constraint TNC for

the CGLP cone C==0 defined in Section 2.4.3. We work along the lines of Bonami’s article

[17] and start by restating the corresponding CGLP.

min β − αᵀx̂

s.t. αᵀ = wᵀA+ w0π
ᵀ

αᵀ = vᵀA− v0πᵀ

β = wᵀb+ w0π0

β = vᵀb− v0(π0 + 1)

1 = w0 + v0

w, v ∈ Rm
+

This linear system can be simplified by subtracting the corresponding equations.

min wᵀb+ w0π0 − (wᵀA+ w0π
ᵀ) x̂ = wᵀ(b− Ax̂)− (πᵀx̂− π0)w0

s.t. 0 = (w − v)ᵀA+ (w0 + v0)π
ᵀ = (w − v)ᵀA+ πᵀ

0 = (w − v)ᵀb+ (w0 + v0)π0 + v0 = (w − v)ᵀb+ π0 + 1− w0

w, v ∈ Rm
+

We can now substitute w0 in the objective and eventually dualize.

min (b− Ax̂)ᵀw − (πᵀx̂− π0)(bᵀ(w − v) + π0 + 1)

s.t. −π = Aᵀ(w − v)

w, v ∈ Rm
+

(4.10)

Let fπ := πᵀx̂− π0 be the “fractional component” of x̂ with respect to the split direction

π. The dual reads

max −π − fπ(π0 + 1)

s.t. 0 ≤ Ay + fπb ≤ b− Ax̂
y ∈ Rn

(MLP)

where the variables w (resp. v) are the duals for the constraints 0 ≤ Ay + fπb (resp.

Ay + fπb ≤ b − Ax̂). This so-called Membership Linear Program is very compact. For

every original constraint it only has two constraints and they have the same LP row. For
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an LP solver this means that the associated slack variable must have upper and lower

bounds which can be handled much more efficiently than two different constraints. Hence,

the Membership LP is almost of the same size as the original LP relaxation.

As mentioned in Section 2.3.3 the intersection cut is already an optimal solution to

the CGLP normalized with TNC. This is true if and only if we try to separate a vertex of

the corresponding polyhedron. Hence, one might think that lift-and-project cuts coming

from the trivial normalization constraint are useless as they only produce intersection

cuts. Bonami came up with the key idea in order to make the Membership LP (and thus

the TNC) usable in practice. He started cut generation via the MLP after other cuts were

added. When still using the original system (the one defining P ) as the basis for the MLP

x̂ is inside the associated polyhedron. In other words, this disadvantage of the TNC does

not come into play if we separate rank 1 cutting planes.

4.4.4 Generalizing the MLP for Other Normalizations

We just we motivated the MLP as an efficient alternative to the CGLP only for the TNC.

Our suggestion is to examine whether we can solve a nonlinear problem on the MLP

polyhedron instead of solving the large CGLP with a different normalization constraint.

This idea comes from the following observation. Let the cut αᵀx ≤ β with multipliers

(w,w0, v, v0) be feasible for the CGLP under a normalization N(w,w0, v, v0, α, β) = 1.

Then µαᵀx ≤ µβ with µ · (w0 + v0) = 1 is feasible for the CGLP under the trivial normal-

ization. On the other hand, solutions to CGLP with TNC correspond to solutions with

normalization N(w,w0, v, v0, α, β) = 1 when we use the following (nonlinear) objective

function:

β − αᵀx̂

N(w,w0, v, v0, α, β)
(4.11)

For a linear normalization constraint N(w,w0, v, v0, α, β) = 1 this kind of problem

is known as a linear fractional program. By certain substitutions it can be modeled as

a linear program (see [22]). Unfortunately, applying this technique here introduces the

normalization itself as a constraint again. More precisely, we end up with the original

CGLP formulation with N(·) = 1 as a normalization.

Our suggestion is to pivot in the MLP but move everything else to the above context.

For example, from the dual solution we can obtain a primal CGLP solution easily. The
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latter can then be analyzed in order to find improving directions with respect to (4.11).

Such an approach already works for the SNC as we will see now.

4.4.5 The Implicit Pivoting Algorithm by Balas and Perregaard

In Section 3.2 we explained the correspondence between basic intersection cuts and lift-

and-project cuts. One may consider an algorithm which solves the CGLP and can switch

back and forth between the tableau representation and the CGLP representation.

Balas and Perregaard were able to move everything necessary for a simplex pivot in the

CGLP (with the SNC normalization) into the context of intersection cuts. Already present

in the tableau is the information which pivots can occur. Feasibility is not important as

very often the optimal lift-and-project cuts do not correspond to basic feasible intersection

cuts. Also simple is the computation of the CGLP objective value as it corresponds

to the (scaled) violation of the intersection cut. What they contributed is mainly the

computation of the CGLP reduced costs. It is used to decide whether a variable enters

the basis. After this decision they use a certain function which computes the actual change

in the objective for every possible leaving variable. These values are necessary because

the simplex algorithm does not work by performing a complete pivot and then computing

the objective value as there are too many possible pivots.

As we did not describe the exact transformation between the two cut types in Sec-

tion 3.2 we also do not go into details here. Instead we refer to [13] for further reading.

4.5 Our Implementation of Lift-and-Project

For our implementation of lift-and-project we used the SCIP framework [2]. The reason

for choosing SCIP was its open and good design. It is well structured with different

plug-ins for specific jobs. Hence, we had very good control over the functionality because

all the plug-ins have several parameters which specify their behavior. More information

about SCIP can be found at its documentation page[1].

Conforming to the goal of this work we did not attempt to implement a very efficient

cut separator. As the main ingredient for lift-and-project seems to be the normalization

constraint we implemented all normalizations from Section 2.3 in their native form. All

of them are straight-forward to implement, except for β-NC. For this constraint we added

a binary indicator variable (in order to model |β|) and converted the LP to a MIP. Note
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that the resulting run time penalty is negligible. For the CGLP we used the original cone,

i.e., C=≥ . Furthermore, we treated lower and upper bounds like regular inequalities.

Significant impact on our work was imposed by the decision against an implementation

which is based on bound shifting and variable complementing. One reason was that we

were curious on how the β-NC performed with respect to sparsity. Our observation

(see Section 4.3) that the β-normalization constraint is incompatible with bound shifting

influenced this decision. Another reason is that it would have made the implementation

much more complicated. Unfortunately, this missing feature has a great disadvantage,

too. Cut strengthening would have been very interesting which now was not possible to

implement. Though we did not carry out experiments with strengthened cuts the topic

is discussed briefly in Section 5.6.

For all experiments we added cuts only in the root node. Furthermore, we did not

generate cuts for all elementary disjunctions π = ek but only for a fixed number. In order

to select this amount of cuts a priori we used a heuristic. The latter works by examining

the fractionality. According to our previous experience, this heuristic is far from yielding

the strongest cuts when we demand only a small number. But it chooses good candidates

for giving a cut at all. More precisely, the elementary disjunctions which do not yield a

negative CGLP objective value tend to have a fractionality which is almost zero or one.

As the testbed we used all instances from the MIPLIB 3.0 and MIPLIB 2003 (see

[34] and [3]). For different experiments we often had to restrict ourselves to a subset

of instances with a certain property, e.g. the presence of equations in the model. All

problems were run on the same machine, namely one with 4 64-bit AMD Opteron 6176

SE processors, each with 12 cores, 300 GB memory equipped with an openSUSE Linux.

45



46



Chapter 5

Sparsity of Cutting Planes

This chapter subsumes the results of our main practical work on sparsity. First we give

a definition which is not a hard task but has some pitfalls which one needs to avoid.

In Section 5.2 we answer the question about the importance of sparsity. We present an

experiment specifically designed to measure the influence of nonzero entries on the run

time of a state-of-the-art dual simplex implementation. Then we move on to lift-and-

project. Here we measure the actual sparsity of cuts from optimal CGLP solutions and

go on to measure the sparsity that one could get by doing extra work. We finish the

lift-and-project specific topic by presenting ideas of how to improve the sparsity. In order

to get an impression of the theoretical limitations associated to sparse cutting planes we

analyze the problem of making an LP row sparse by using other valid equations. The

last section is about sparsity of other classes of cutting planes, especially the related ones

(intersection and GMI cuts).

5.1 Searching for a Definition

At first glance, a definition of sparsity or density is very simple. Of course, an LP row

should be called sparse if it has only a few nonzero coefficients and dense in the other

case. During our search for a definition we found a one which is not suitable. In [6] the

authors state

A first realization is that such cuts must be sparse, i.e., the cuts must have

many zero coefficients.
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The problem arises because their polyhedral description of a MIP relaxation is in equation

form, i.e.,

P = {x ∈ Rn : Ax = b ∧ x ≥ 0} . (5.1)

Later, Andersen and Weismantel introduce the concept of a zero coefficient cut which is

reasonable in the sense that those cuts are optimal with respect to a certain cut separation

problem. Unfortunately, in a practical MIP, their zero coefficients do not necessarily

correspond to zero coefficients in the cut that is generated. The reason is as follows. By

using the equation form they introduce a slack variable for every inequality. On the one

hand, the definition of sparsity is applied to the whole equation including slack variables.

On the other hand, the LP solver does not introduce slack variables explicitly.

Consider, for example, a problem with several knapsacks of size 100 over distinct sets

of variables.

a1,1x1 + . . .+ a1,100x100 ≤ b1

a2,1x101 + . . .+ a2,100x200 ≤ b2
...

...
...

am,1x100m−99 + . . .+ am,100x100m ≤ bm

(5.2)

They may be linked together by some other constraint. With help of slack variables

s1, . . . , sm for the inequalities in (5.2) a valid cut may be α1s1 + . . . + αmsm ≤ β. The

latter may be considered sparse because fewer than 1% of the variables have a nonzero

coefficient. In an implementation, however, the slack variables will be substituted and

the resulting cut will be very dense.

Another transformation for polyhedra is the replacement of some unconstrained vari-

able x by the difference of two nonnegative variables x+, x−. This also has an effect on

the (relative) number of nonzeros. Hence, we should also try to avoid assumptions like

x ∈ Rn
+. Row transformations like copying or appending of unit rows does not influence

sparsity. This allows us to use inequalities (replacing equations by two inequalities) and

handle bounds explicitly, giving rise to the following definition.

Definition 5.1 (Primal Sparsity/Density). Let P = P≤(A, b) ⊆ Rn be a polyhedron.

The absolute (primal) density (resp. sparsity) of an inequality Aj,∗
ᵀx ≤ bj is the value

d := |supp (Aj,∗)| (resp. n− d). Its relative (primal) density (resp. sparsity) is defined as

δ := d/n (resp. 1− d/n).

48



Often, cutting planes are derived from a linear row combination λᵀAx ≤ λᵀb for

λ ∈ Rm
+ . In order to cut off something, the latter is strengthened which often does not

change the sparsity. For example, Chvátal Gomory (CG) cut generators simply round

down the right-hand side. This consideration leads to another definition.

Definition 5.2 (Dual Sparsity/Density). Let P = P≤(A, b) ⊆ Rn be a polyhedron. The

absolute dual density (resp. sparsity) for a cut derived from row multipliers λ ∈ Rm
+ is

the value d∗ := |supp (λ)| (resp. m − d∗). Its relative dual density (resp. sparsity) is

defined as δ∗ := d∗/m (resp. 1− d∗/m).

The motivation for the notion of dual sparsity is based on the assumption that the orig-

inal problem is sparse. In this case, a row combination with only few nonzero multipliers

implies a sparse cutting plane as well.

Remark 5.1. When modeling aᵀx = b in P≤(A, b), the two inequalities aᵀx ≤ b and

−aᵀx ≤ −b are used. Fortunately, this does not influence the absolute dual sparsity

because for cut derivation only one of the two associated multipliers has to be used.

5.2 Effects of Sparsity

So far we only claimed the importance of sparsity or cited other authors. It is now time to

prove that sparsity is indeed a relevant property. The major claim is that dense cuts slow

down the underlying LP solver. As the latter is called once for each B&B node it only

makes sense to measure this slowdown for a complete (or at least large) exploration of the

search tree. Hence, a potential experiment would be to solve an instance multiple times

with different sparsity. Of course, making a row sparser is relatively hard but making it

dense is not a tough problem assuming the presence of several equations. Unfortunately,

a MIP solver is not very robust with respect to changes in the LP. Even just adding

a valid equation to one of the inequalities may result in a different optimal relaxation

solution, different generated cutting planes, a different branching decision, or almost any

other decision which is made during branch & bound. Therefore we carefully devised the

following experiment to measure the claimed slowdown effect.

We ran CPLEX with default settings. After the presolve phase we tried to create a

dense equation αᵀx = β by combining all present equations of the presolved problem in a

certain way. We discarded this problem instance for the experiment if αᵀx = β had a rela-

tive primal density of less than 25 %. Note that this is also true if no equations are present.
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We proceeded with the regular solving process except that we hooked Algorithm 5.1 into

the branching decision algorithm of CPLEX.

Algorithm 5.1 Pseudocode for Densification Experiment

1. Get the current optimal basis B from the node LP.

2. For d = 0, . . . , 9, carry out Steps 3, . . . , 6.

3. Copy LP to LP′ and apply the CPLEX branching steps (bound tightening) to LP′.

4. Add αᵀx = β to the first d rows of LP′.

5. Feed B as a warm-start basis into LP′.

6. Solve LP′ with the dual simplex method. Measure the number of simplex iterations
(pivot steps) and the solving time.

Remark 5.2. The set B in Algorithm 5.1 need not index a basis for LP′ because adding

of rows may result in a zero-row, although it is highly unlikely. This did not not happen

in our experiments, i.e., all bases B were primal infeasible and dual feasible in Step 6.

We now present the results of this experiment. In Figure 5.1 we depicted the measured

relationship between the number of “densified” rows and the resulting speed of the dual

simplex implementation. A correlation is not only visible but also strong. On the one

hand adding 10 cuts of a certain family is very typical. On the other hand a case where

adding 10 cuts implies a reduction of the branch & bound tree by 20 % is harder to find.

The latter would be necessary to compensate the slowdown imposed by 10 very dense

cuts.

A second diagram shows almost the same relationship, except that we replaced the

number of “densified” rows by the average number of nonzeros in the LPs. In order to

make the results comparable we took relative values. For every instance we used the

values for the unmodified LP as the point of reference.

We close this section by concluding that sparsity is indeed a very important property

of cutting planes. After defining sparsity and showing its importance we can then turn

to the main topic of this work.

50



0 1 2 3 4 5 6 7 8 9

4.5

5

5.5

6

Number of densified rows

S
p

ee
d

of
d
u
al

si
m

p
le

x
[i
te

rs
/

m
s]

Figure 5.1: Simplex speed for densified MIPs.
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Figure 5.2: Relative simplex speed depending on the number of nonzeros.
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5.3 Measuring Sparsity of Lift-and-Project Cuts

In this section we present the main sparsity results for lift-and-project cutting planes.

For this we carried out two experiments with all mentioned normalization constraints. As

the notion of cut rank is very important in theory and practice we also carried out all

experiments for rank 1 cuts and for cuts with arbitrary rank. The latter means that in

a cut round all previously generated cuts are considered as regular inequalities and may

be taken into account for new cuts. In the first experiment we attempted to generate

lift-and-project cuts in 10 rounds, generating 100 cuts every time. We then measured

basic sparsity-properties. For a subset of small problems we analyzed the sparsity in the

CGLP with a lot more computational power. The goal was to find out how sparse the

cuts can become compared to the first (optimal) solution.

5.3.1 Measuring the Actual Sparsity

To measure the sparsity of lift-and-project cutting planes we carried out the following ex-

periment. For every problem instance from our testset we ran SCIP with default settings,

except that we disabled other cut generators and branch & bound. We allowed 10 rounds

of 100 cuts, i.e., 10 times the separator was allowed to generate 100 cuts before SCIP

solved the enhanced LP relaxation to produce a new x̂. The following data was gathered

for every cut in every instance of our testbed.

• Cut round

• Absolute primal density

• Absolute dual density (average of supp(w) and supp(v))

• Number of cancellations (number of zero coefficients with nonzero dual support)

From the absolute primal/dual density we obtained the corresponding relative values. For

every round we only used the arithmetic mean to compute average values. This makes

sense because then the average density corresponds to the sum of all generated nonzeros,

divided by the number of generated cuts. Furthermore, the overall number of nonzeros

is a measure for the additional effort that the LP solver has to spend (see Figure 5.2 on

page 51). Eventually, all instances were considered to compute averaged (arithmetic and

geometric mean) values. The experiments were repeated for all normalizations and rank
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conditions (rank 1 or arbitrary rank). The details for every instance can be found in the

appendix on page 72.

Type Rank α∞-NC α1-NC β-NC DNC ENC SNC TNC

Abs. primal density = 1 1,361.2 27.4 101.6 184.3 255.6 209.1 285.2
(arithmetic mean) ≤ 10 1,373.3 39.1 189.5 196.6 252.9 238.9 440.3
Abs. primal density = 1 460.8 10.4 37.0 29.1 30.7 30.5 48.0
(geometric mean) ≤ 10 487.1 19.7 65.0 60.2 78.7 64.7 130.4
Abs. dual density = 1 1,194.2 155.2 105.8 92.5 94.6 97.0 242.2
(arithmetic mean) ≤ 10 1,212.3 212.7 388.1 95.0 114.1 112.3 355.1
Abs. dual density = 1 386.9 29.9 30.0 19.2 19.8 20.2 46.6
(geometric mean) ≤ 10 410.8 60.1 77.8 32.5 39.6 35.3 103.2

Table 5.1: Statistics of absolute density of lift-and-project cuts.

Type Rank α∞-NC α1-NC β-NC DNC ENC SNC TNC

Rel. primal density = 1 86.6 6.4 16.1 17.1 18.7 17.6 21.9
(arithmetic mean) ≤ 10 89.7 9.2 30.3 24.0 30.7 25.3 36.3
Rel. primal density = 1 82.2 1.9 6.6 5.2 5.5 5.4 8.6
(geometric mean) ≤ 10 86.9 3.5 11.6 10.7 14.0 11.5 23.3
Rel. dual density = 1 27.7 6.2 5.8 3.7 3.8 3.8 7.3
(arithmetic mean) ≤ 10 27.4 9.0 22.0 4.6 5.2 4.8 10.3
Rel. dual density = 1 23.2 1.8 1.8 1.2 1.2 1.2 2.8
(geometric mean) ≤ 10 23.3 3.3 4.6 1.8 2.2 1.9 5.7

Table 5.2: Statistics of relative density of lift-and-project cuts in %.

Type Rank α∞-NC α1-NC β-NC DNC ENC SNC TNC

Number of cancelations = 1 6.7 67.4 12.0 1.7 9.8 3.2 25.9
(arithmetic mean) ≤ 10 5.8 76.2 9.7 1.2 15.7 2.8 43.0
Number of cuts = 1 239.9 367.2 82.2 404.5 323.4 380.0 360.5
(arithmetic mean) ≤ 10 301.6 363.0 71.4 410.9 329.6 387.3 400.4

Table 5.3: Sparsity-related statistics of lift-and-project cuts.

We start with statistical values which are averaged over the complete instance set. In

Table 5.1 we present the absolute values, in Table 5.2 the relative values, while Table 5.3

lists some additional statistics.
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A first observation is that the average number of generated cuts is roughly the same

for all normalizations except for β-NC. With the latter constraint our separator is only

able to generate 20 % of this amount.

Looking at the primal and dual sparsity values we see that in general the α∞-NC

normalization generates very dense cuts while the α1-NC normalization is the winner

when it comes to sparsity. At least for the former effect we can present an explanation.

Let αᵀ
i x ≤ βi for i = 1, 2 be two sparse cuts which are feasible to the CGLP with α∞-

NC and assume that their coefficient vectors αi have distinct support. Then the cut

(αᵀ
1 + αᵀ

2)x ≤ β1 + β2 is a valid cut and the objective value (cut violation) is the sum

of the two original objective values. Hence, one can think of α∞-NC as a normalization

which tries to mix different cuts such that their sum “fits” into the [−1, 1]-bounds. Such

a mix is typically very dense. An interesting question arises because we don’t know how

the αp-NC for p = 2 performs as the associated CGLP truncation is nonlinear.

The other four constraints give almost the same results whereas TNC generates rela-

tively dense cuts, too. We like to mention that our proposed constraint DNC yields the

sparsest cuts when we restrict ourselves to the multiplier-based normalizations. When

comparing rank-1 cuts with cuts of arbitrary rank we can conclude that cuts of higher

rank are denser than their rank 1 counterparts. The number of cancellations is very inter-

esting as the α1-NC which produces the sparsest cuts also showed the largest number of

cancellations. The reverse observation is possible for α∞-NC. The fewest cancellations can

be observed in case of the multiplier-based normalization constraints. This implies that

if such a cut is sparse then the sparsity must come from the sparsity of the incorporated

inequalities. Hence, we expect a strong correlation between primal and dual sparsity for

these normalizations.

After measuring sparsity one may want to know which cuts are sparse and which are

dense. Using our experiment data we investigated the question how sparsity is affected

by the cut round. This question is especially interesting with respect to our claim that

higher rank cuts tend to be denser in general. The 6 diagrams in Figure 5.3 show the

results answering exactly this question. We have no results for the β-NC as there was not

a single instance where 10 cut rounds could be carried out. The reason is that not enough

cuts (if any) were able to cut off the current relaxation solution much and the MIP solver

decided to stop generating more cuts. This corresponds to our first observation about the

number of generated cuts.
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Figure 5.3: Arithmetic mean of relative primal density by rounds.
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In order to take into account as many instances as possible we included those for

which the current normalization generated at least one cut in round 10. In other words,

the depicted values come from slightly different instance sets although they overlap at

about 80 %. Hence, their specific values are not comparable. But every single diagram

tells us a lot about the relationship between sparsity and the cut round. First, we verify

that the bars for round 1 have the same height which is reasonable as the generation

in round 1 coincides for rank 1 and arbitrary-rank experiments. Second, the density

for cuts with arbitrary rank increases with the cut round. For rank 1 cuts, the average

primal cut density does not change significantly for all normalizations except for α∞-NC.

Interestingly, it decreases for this normalization but we don’t have any idea for a reason.

In Section 5.1 we introduced the concept of dual sparsity. The idea comes from

arguments in literature about the sparsity property of the SNC which is claimed to stem

from few selected multipliers. Our hope was to find out for which (if any) normalization

constraint there is a correlation between primal and dual sparsity.

Figure 5.4 shows results for this correlation. We looked at the problem pp08aCUTS

because for this instance our separator was able to generate a decent amount of cuts

regardless of the normalization constraint (see Tables A.11 and A.12 for details). In the

diagram we painted a dot for every generated cut. The coordinates of this dot come from

the relative dual and primal sparsity of this cut, respectively. The number of cuts having

the same primal and dual sparsity is not depicted.

As expected, α∞-NC looks horrible when the goal is sparsity. It does not need many

multipliers, though. The centers of the “clouds” are at 20 % dual density but the cuts

have a density of more than 75 %. The diagrams for α1-NC, SNC, ENC and DNC look

very similar. We observe a linear correlation where the slope for rank 1 cuts is smaller

than the slope for cuts of arbitrary rank. The conclusion is clear: Having the number of

multipliers fixed, higher rank cuts are denser than rank 1 cuts. This seems to be true

for rank 1 cuts from TNC while it looks different for the higher rank cuts. Here we see

two “clouds” where a small amount is very sparse (≈ 10 %) and a larger portion is dense

(50 − 75 %). This time we were able to produce a figure for β-NC as well. Again, the

higher rank cuts show an interesting effect. Almost all “hide” at the coordinates (1.0, 1.0)

which means that such a cut incorporated every constraint which in turn resulted in a

fully dense inequality.
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Figure 5.4: Primal vs. dual density in instance pp08aCUTS.
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We finish the discussion with a summary of the conclusions we made.

• There is a correlation between dual and primal sparsity. For several normalizations

it is almost linear.

• Rank 1 cuts are preferable when the goal is sparsity.

• β-NC does not produce many cuts which are dense once higher rank cuts are per-

mitted.

• α∞-NC produces dense cuts already in the first round.

• α1-NC produces very sparse cuts.

• We slowly loose control of sparsity in case of higher rank cuts derived with the TNC.

• The remaining normalizations produce cuts with a decent sparsity.

5.3.2 Measuring the Possible Sparsity

This section is dedicated to the question how sparse lift-and-project cutting planes could

be in theory. For this we solved a series of MIPs for every cut. As those problems are

extensions to the CGLP this experiment is very time-consuming. Although we allowed

every instance to be processed a complete week (on a single CPU) we were only able to

carry out the experiment for the 12 small instances pp08aCUTS, mas74, p0201, stein45,

pk1, rout, misc03, p0282, stein27, misc07, bell5, and timtab1. Nevertheless, we

obtained several interesting results.

The purpose of our MIP was to investigate the structure of the CGLP with respect to

sparsity of the generated cuts. Building on top of the CGLP we added binary variables

xj for j ∈ [n] which are supposed to be 1 if the cut coefficient αj is nonzero. The absolute

density is then just the sum of all x variables.

−Mxj ≤ αj ≤Mxj (5.3)

Equation 5.3 shows how the variables are linked together. We call the CGLP together

with all these equations the augmented CGLP. This model is correct as long as M is a

sufficiently large constant. In general, these so-called big-M formulations often introduce

numerical difficulties. In fact we cannot choose M to be extremely large as our MIP solver
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uses floating point arithmetic. It “thinks” that a number i is zero if |i| < ε for some small

ε > 0. In our specific case it could be that |xj| < ε even though |αj| > ε, i.e., the solver

claims that α is a zero coefficient even though it is not.

In order to reduce the number of mistakes to an acceptable level we did two things.

First, we decreased ε from its default value of 10−9 to a value of 10−12. Second, we solved

the LP part a second time after fixing αj to zero for all j with |xj| < ε in the MIP solution.

Of course this way there is still no guarantee for correctness, but we reduced the number

of cuts to a minimum for which the solver incorrectly pretended sparsity.

The just described MIP was used to find the minimal CGLP objective value (best cut

violation) under an absolute sparsity constraint. Algorithm 5.2 provides the details of

this experiment for every cut.

Algorithm 5.2 Pseudocode for Measuring the Lift-and-Project Sparsity

1. Let d be the base density of the cut obtained by solving the CGLP with violation
vd. Construct a map ϕ : [d]0 7→ R+ with ϕ(0) := 0 and ϕ(d) := 1.

2. For m = 1, . . . , d− 1, carry out Steps 3, . . . , 4.

3. Bound the absolute density of the cut by m (from above) via the x variables. Solve
the augmented CGLP with a time limit of 60 s.

4. Solve the CGLP with those αj fixed to zero for which xj = 0 in the optimal solution
of the augmented CGLP. and obtain the cut violation vm. Let ϕ(m) := vm/vd be
the relative cut violation.

5. By δb := d/n we denote the relative density of the cut obtained from the CGLP.
By δo := min{m : ϕ(m) = ϕ(d)}/n we denote the optimal relative density. Finally,
by δv := min{m : ϕ(m) > 0}/n we denote the first valid density, i.e., the smallest
density for which we obtain an inequality which cuts off x̂.

The computational effort for this procedure was especially large for the α∞-NC due to

the high base density. Although we restricted the solving time to 60 seconds per MIP, a

base cut with several thousand nonzeros implied a huge number of MIPs to solve. We tried

to reduce it by warm-starting each run with the previously found solution. This helped a

lot, especially when the optimal density had been found because then all subsequent runs

had no integrality gap to close.
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Figure 5.5: Distribution of δb and δv with respect to δo for the α- and β-normalizations.
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We now turn to the results of this experiment. Figures 5.5 – 5.7 consist of pairs of

diagrams. For each normalization we depicted the relationship between δb and δo (blue

and red) as well as that between δv and δo (orange and green). They display the relative

amount of generated cuts with a certain property.

We focus on the first and observe that all 7 pictures have almost the same shape.

There is a more or less large bar for δb/δo = 1. It means that the cut from the CGLP was

already optimally sparse. The remaining ranges always show a distribution similar to the

Gaussian distribution. Here we are interested in the height and width of this “hill”.

We already know that α1-NC and the SNC-related normalizations generate cuts of

decent sparsity. It is thus no surprise that the majority of the generated cuts has already

optimal sparsity. For all these normalizations the rank 1 cuts perform better than cuts of

arbitrary rank. This is very clear for α∞-NC and TNC.

Except for our previous winner, the α1-NC, all distributions have their maximum for

the nonoptimal cuts in the range of 1.3 ·δo ≤ δb ≤ 10 ·δo. For example, α∞-NC has several

cuts which are 500 % too dense. β-NC is slightly and the TNC already much better. Note

that most of the nonoptimal cuts from α1-NC are only at most 20 % too dense.

The pictures on the right-hand side show the case where we have cuts which are

sparser than δo by allowing a cut violation which is smaller than that of the optimal

CGLP solution. Note that we still require cuts, i.e., the violation must be strictly greater

than zero.
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Figure 5.6: Distribution of δb and δv with respect to δo for the trivial normalization.
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(f) Nonoptimal density improvement for DNC

Figure 5.7: Distribution of δb and δv with respect to δo for the multiplier-based normal-

izations.
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Again, the 0-bar is very special. Here it shows the relative amount of cuts for which we

cannot gain sparsity by allowing a nonoptimal violation. On the contrary, the rightmost

bar displays the cuts with almost arbitrary small density after sacrificing optimality.

Except for β-NC, all normalizations allow to generate the same set of cuts in the

first round. Of course, they have different objective values due to different scaling. But

as we allow any negative objective values now, the sparse cuts must appear even for

normalization constraints which tend to yield dense cuts. This observation manifests

itself in the diagrams, too:

On the one hand, the optimal cuts from the α1-NC are known to be sparse already.

Hence, sacrificing optimality does not give sparser cuts. This implies a very tiny rightmost

bar. On the other hand, the optimal cuts from the α∞-NC are typically dense and the

rightmost bar is very huge, collecting all the sparse cuts.

A very interesting artifact can be seen in Figure 5.5 (f). Here the violation seems to

be completely unrelated to sparsity. Looking for the source of this anomaly we found the

following effect: In Step 3 of Algorithm 5.2 the augmented CGLP often pretends that it

has found a cut of specified density with optimal violation. Then in Step 4 the verification

via the CGLP without the x variables fails, returning a violation of zero. We have not

found a good reason why this happens every time, except for general numerical trouble

with the β-NC. Of course, the diagram itself is simply wrong but we decided to keep it

because of the interesting anomaly.

As we observed in Section 5.3.1 already, the TNC shows different results depending on

the rank restrictions. Again, the fact that rank 1 TNC cuts are sparser than their coun-

terparts with arbitrary rank is clearly visible. The other multiplier-based normalizations

behave in the same way except that the DNC, being only a bit sparser than the other

two, has very few cuts with a small δv.

We now turn to Figure 5.8 which is the last in this section. The diagrams give the

average cut density for every fixed violation (relative to the CGLP violation). It shows

an “average graph” for ϕ−1, i.e., the inverse map of ϕ (see Algorithm 5.2), averaged over

all cuts. All graphs are monotone increasing because a higher allowed density will never

result in a smaller optimal cut violation. The interesting point is that the graphs are

convex for a nonzero violation. From this we can conclude that if one desires very sparse

cuts it may be helpful to relax the requirement of an optimal violation to a value of 90 %

or 95 %. On the contrary, relaxing the violation too much doesn’t help a lot.
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Figure 5.8: Possible sparsity when permitting nonoptimal cut violations.
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Finally, we present our conclusions about the topic of this section.

• The big-M model can be used to measure or control sparsity in many cases. It does

not work for the β-NC though.

• The α1-NC, DNC, SNC, ENC natively produce cuts which are often optimally

sparse. This is even true if we allow nonoptimal cut violations.

• The converse holds for the horrible normalization α∞-NC. Here, the optimal density

is a fraction of the native density.

• The situation for the TNC is moderate. At least a third of the cuts is already

optimal, but the others are quite too dense.

5.4 Improving Sparsity of Lift-and-Project Cuts

The next step after measuring the current state and the possibilities is of course the

work on practical improvements. The augmented CGLP we used in Section 5.3.2 is not a

practical method as solving it often takes too long. A second problem is that a potential

improvement method must also be usable in one of the setups with a reduced size CGLP.

For example, the cut coefficients are present as variables in the implicit algorithm by

Balas and Perregaard. This is also true for the MLP.

A first approach is an indirect control via constraints. In the previous sections of this

chapter we proved that the normalization constraints have a heavy impact on sparsity.

Choosing the right one is nontrivial because sparsity is not the only goal. Further ones

are the strength of the cuts (the ability to reduce the size of the B&B tree significantly),

diversity (cutting in different directions), and other numerical properties like a small range

of the coefficients.

Another idea complements the above one. The CGLP is a very large and degenerate

LP. Hence requiring optimality reduces its size only marginally. We suggest to perform

local improvements by pivoting in the optimal face. The problem of finding a sparse vertex

of a polyhedron is NP-hard which will become clear in the next section. Nevertheless, a

greedy improvement strategy for CGLP can always be applied.

With our experiments we showed that for the most used normalization (SNC) the cuts

are often optimal when we demand optimal violation. Our conjecture is that the second
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idea won’t help too much. Unfortunately, an implementation of such a local improvement

heuristic was not possible due to time limitations for this work.

5.5 Improving Sparsity of any LP Row

Up to now we specifically investigated lift-and-project cutting planes and aspects how to

generate sparse cutting planes. This section is dedicated to the more general problem of

improving sparsity of any LP row.

5.5.1 The Row Sparsification Problem

For a given linear inequality system Ax ≤ b and another inequality αᵀx ≤ β we don’t have

much choice in how to change the single inequality. Any nonnegative linear combination

λᵀAx ≤ λᵀb can be added to αᵀx ≤ β. But as we do not want to relax the single

inequality (or in the context of cut separation generate a weaker cut) we can only use

those inequalities that are always tight. That is, not only λᵀAx ≤ λᵀb must be true for

every x ∈ P≤(A, b), but also λᵀAx = λᵀb. In other words, we are allowed to use equations

for row sparsification. To explore the problem we state it in a formal fashion.

Problem 5.3 (SparseLinearRow). Given a matrix A ∈ Qm×n, a vector a ∈ Qn and

an integer k ∈ [n], the task of the problem SparseLinearRow is to decide whether there

exists λ ∈ Qm such that

|supp (a+ λᵀA)| ≤ k.

The associated minimization problem attempts to minimize k.

5.5.2 Complexity of Row Sparsification

We now investigate the computational complexity of Problem 5.3. We state another

related problem of which we know that it is NP-complete (see Problem MP5 in [29]).

Problem 5.4 (SparseSolutionLinearSystem). Given a matrix A ∈ Zm×n, a vector

b ∈ Zm and an integer k ∈ [n], the task of the problem SparseSolutionLinearSystem

is to decide whether there exists x ∈ Qn such that

|supp(x)| ≤ k and Ax = b.
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In order to show that Problem 5.3 isNP-complete as well we need to give a polynomial

time reduction which reduces Problem 5.4 to Problem 5.3.

Theorem 5.3. The problem SparseLinearRow is NP-complete.

Proof. First we describe a polynomial-time algorithm which accepts any input for Prob-

lem SparseSolutionLinearSystem and outputs input for SparseLinearRow.

Let A ∈ Zm×n, b ∈ Zm and k be given. With a carefully implemented Gaussian

elimination (see [25]) or any polynomial-time linear programming algorithm, find an in-

homogeneous solution x∗ and a basis {y1, . . . , yd} for kerA = {x ∈ Rn : Ax = 0} (with

d ≤ n). Let Y ∈ Qd×n be the matrix consisting of rows yj. Give (Y, x∗, k) as input to

SparseLinearRow.

We finish the proof by showing the following equivalence:

(A, b, k) is a “yes”-instance for SparseSolutionLinearSystem

⇔ ∃x ∈ Qn : Ax = b ∧ |supp(x)| ≤ k

⇔ ∃x∗ ∈ Qn,∃λ ∈ Qm : Ax∗ = b ∧ x = x∗ + λᵀY ∧ |supp(x)| ≤ k

⇔ ∃x∗ ∈ Qn,∃λ ∈ Qm : Ax∗ = b ∧ |supp (x∗ + λᵀY )| ≤ k

⇔ (Y, x∗, k) is a “yes”-instance for SparseLinearRow

Instead of deciding for a certain k, we are interested in the problem which minimizes

k (the support of a+ λᵀA). Knowing that SparseLinearRow is NP-complete, we can

deduce Corollary 5.4.

Corollary 5.4. The minimization version of SparseLinearRow is NP-hard.

For a practical implementation we can adopt our previous MIP model which used

binary variables to indicate a nonzero coefficient. Of course, as a big-M method this

imposes the same numerical problems. Instead of such a scheme which attempts to solve

the problem optimally, the state-of-the-art solvers mostly approximate with a very small

effort. An example is to test every single equation whether it can be combined with a cut

row to obtain a cut with better numerical properties.
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5.6 Sparsity of Other Classes of Cutting Planes

In this section we present our knowledge about sparsity properties of other cutting plane

classes and related work.

We start with simple intersection cuts which we introduced in Section 3.2. By a

quick look at the formula it is clear that these cuts simply inherit their sparsity from the

tableau row. The situation is even better for GMI cuts. In principle, they also inherit

from the tableau. Additionally, a coefficient αj is zero if j is an integer variable and the

corresponding row entry is an integral. The state-of-the-art solvers make heavy use of

this property. An important part of the cut generation module is the so-called aggregator.

Its task is to combine the present LP rows of the tableau in order to find a row with

certain properties. Among these properties is sparsity, integrality of coefficients and the

necessary condition of a fractional right-hand side. This aggregated row is then fed into

several different cut generators, the GMI separator being only one of them. Note that the

linear combination does not necessarily yield basic GMI cuts.

The only other class of cuts for which we found a remark about sparsity is the class

of Chvátal Gomory cuts. It was thoroughly analyzed by Fischetti and Lodi in [26].

They implemented a MIP to generate CG cuts. Compared to lift-and-project this MIP

is smaller than the CGLP as it only consists of one set of multipliers instead of two.

But the objective function is in fact the same. They enhance their objective function by

the sum of the dual multipliers scaled down by some small value. In our context this

corresponds to a penalization of dual density. As they reported to generate sparser cuts

this way, we can assume that the correspondence observed in Section 5.3.1 is not specific

to lift-and-project.
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Appendix A

Computational Results per Instance

Densification

Tables A.1 and A.2 show the instance-wise results for our first experiment. It is described

in Section 5.2 which also contains interpretation and figures.

Both tables display the speed of the dual simplex implementation after making some

rows dense. An additional column “Density” displays the relative density of the equation

which was used to make the above rows dense.

Sparsity Measurements

The remaining tables on pages 72 – 83 show the details of the experiment about the actual

sparsity. We provide details for rank 1 cuts as well as for cuts of arbitrary rank and state

absolute and relative sparsity. All excluded problems were not taken into account because

at least one configuration was unable to generate a cut. The specific reasons are twofold:

• The optimal cut violation was not negative.

• The β-NC does not guarantee to bound the polyhedron in every direction. Hence,

in some cases the LP was unbounded.

The statistical analysis and interpretation for this experiment can be found in Sec-

tion 5.3.1.

We do not provide details for the last experiment as there is a lot of information for

every generated cut. Hence, the reader has to trust the presented figures in Section 5.3.2.
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Instance Density [%] 0 rows 1 rows 2 rows 3 rows 4 rows 5 rows 6 rows 7 rows 8 rows 9 rows

10teams 100.0 11,693.4 11,327.2 10,952.9 10,403.5 10,149.6 9,787.8 9,484.6 9,040.2 8,813.3 8,465.5
a1c1s1 61.7 2,811.1 2,654.5 2,182.4 2,060.2 1,913.8 1,750.4 1,624.8 1,530.3 1,442.4 1,346.6
aflow30a 33.5 9,893.0 9,948.1 9,556.7 9,455.8 9,267.6 9,148.8 9,027.5 8,918.9 8,831.7 8,759.3
aflow40b 26.7 4,594.6 4,591.9 4,326.8 4,247.7 4,142.7 4,102.4 4,024.9 3,962.0 3,931.1 3,878.9
air04 90.2 4,222.4 4,002.3 3,746.1 3,528.3 3,231.7 3,319.3 3,121.1 2,844.8 2,866.2 2,668.6
air05 89.1 5,278.1 4,847.8 4,557.2 4,225.9 4,038.4 3,900.3 3,752.8 3,545.0 3,431.8 3,372.6
arki001 98.0 6,252.2 6,148.6 5,753.2 5,515.6 5,285.0 5,005.2 4,911.3 4,827.6 4,664.2 4,610.2
atlanta-ip 50.5 441.6 578.6 445.1 270.3 232.3 206.9 194.3 205.3 311.3 310.3
blend2 56.9 19,170.0 18,135.8 17,882.3 17,954.9 17,682.2 17,399.9 17,176.9 16,938.8 16,541.1 15,617.1
dano3mip 94.4 555.0 528.0 437.6 419.8 413.5 387.3 332.9 333.4 300.6 270.9
danoint 88.2 8,295.4 7,903.6 7,600.6 7,352.9 7,161.9 6,971.9 6,805.1 6,620.3 6,461.2 6,303.9
dcmulti 75.1 16,111.0 18,039.3 14,554.1 13,872.9 13,386.7 12,994.3 12,989.1 11,725.7 12,073.5 10,968.2
ds 96.5 398.3 269.7 187.6 122.3 90.0 117.5 104.5 121.1 122.9 95.1
fiber 34.3 15,817.3 10,743.9 15,285.5 15,123.9 12,392.2 14,860.0 14,880.9 14,316.0 14,494.4 11,525.8
fixnet6 26.1 10,806.6 11,296.4 10,734.5 10,064.9 9,619.3 8,210.8 9,066.7 9,415.8 9,272.7 9,291.6
flugpl 64.3 38,674.0 39,248.7 39,659.1 40,381.6 37,635.4 37,636.4 38,034.1 37,210.9 38,059.0 37,975.5
gesa2 o 60.4 4,951.4 4,525.0 4,497.4 4,111.1 3,937.9 3,746.2 3,593.2 3,454.2 3,318.5 3,095.9
gesa2-o 60.4 4,934.1 4,558.0 4,600.9 4,106.7 3,948.8 3,787.0 3,587.8 3,484.0 3,339.2 3,111.7
gesa3 o 41.9 5,274.1 5,150.3 5,073.8 4,494.1 4,400.6 4,073.3 3,932.0 3,937.8 3,809.6 3,732.8
glass4 94.0 15,986.2 15,297.7 14,766.3 14,189.2 13,988.9 13,732.3 13,483.0 13,303.5 12,995.7 12,822.2
harp2 100.0 17,492.7 16,642.8 15,956.8 14,956.4 14,365.3 13,679.9 13,177.9 12,724.6 12,292.9 11,879.6
khb05250 43.9 19,428.7 16,675.2 18,823.4 18,001.3 17,990.0 16,618.8 15,850.4 14,679.8 13,483.8 13,664.8
l152lav 78.4 19,392.0 19,435.6 18,617.6 17,720.3 17,253.4 16,032.6 15,227.8 14,563.1 14,163.4 13,776.6
markshare1 100.0 39,602.2 39,848.8 42,151.8 42,567.0 42,408.2 42,405.6 42,466.9 41,837.3 41,993.9 40,916.7
markshare2 100.0 39,510.2 41,277.1 42,034.9 42,286.5 42,260.1 42,214.8 42,086.3 42,093.8 41,907.9 41,458.7
misc03 80.4 26,430.8 26,426.3 26,438.8 25,336.2 25,094.5 24,679.1 24,987.1 24,824.5 24,579.2 24,417.6
misc06 60.6 9,297.4 9,712.3 9,134.1 8,770.9 8,371.9 8,228.0 7,700.3 7,471.7 7,133.5 7,062.3
misc07 85.4 20,642.7 20,245.1 19,542.4 19,021.3 18,961.9 18,746.2 18,047.3 18,179.8 18,080.4 17,982.0
mod010 78.5 3,346.0 3,390.7 3,226.6 3,001.9 3,300.8 3,141.4 2,925.1 5,012.6 4,289.5 3,322.2
mod011 63.6 1,526.6 1,454.7 1,389.3 1,364.4 1,272.8 1,253.2 1,229.8 1,148.2 1,062.8 1,062.8
modglob 74.5 16,076.2 15,555.9 12,797.0 12,461.7 11,902.8 11,328.9 11,063.8 10,631.6 10,189.5 10,006.1

Table A.1: Simplex speed for densified MIPs (part 1).
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Instance Density [%] 0 rows 1 rows 2 rows 3 rows 4 rows 5 rows 6 rows 7 rows 8 rows 9 rows

momentum2 98.0 355.5 302.0 337.6 299.2 367.4 300.7 299.9 253.2 319.0 294.7
momentum3 99.5 92.9 84.1 83.1 79.2 80.8 80.1 80.8 83.9 78.3 85.7
msc98-ip 54.9 599.9 577.6 488.7 458.8 472.8 452.7 469.4 454.7 509.6 518.0
mzzv11 57.8 1,379.8 1,345.9 1,308.8 1,291.8 1,254.4 1,249.2 1,203.7 1,238.8 1,150.1 1,175.0
mzzv42z 56.5 1,433.3 1,400.1 1,283.5 1,323.6 1,281.1 1,286.3 1,287.4 1,181.6 1,192.6 1,193.6
nw04 92.3 3,374.3 3,287.5 3,253.5 2,814.3 3,258.2 3,443.7 3,368.3 3,176.4 2,900.7 2,858.6
p0033 25.0 48,825.6 55,004.0 59,524.9 57,590.2 60,611.3 58,107.5 58,107.5 56,864.8 59,121.0 56,052.9
p0201 91.8 31,918.9 31,733.6 31,373.3 31,025.2 30,082.3 28,563.4 27,594.8 26,276.4 26,203.4 25,440.9
pk1 98.8 54,476.2 55,267.2 52,589.7 51,680.6 51,625.8 50,205.4 49,000.4 48,354.6 47,325.6 46,604.5
pp08aCUTS 57.0 17,225.0 16,621.7 15,969.0 15,470.5 14,918.1 14,558.4 14,263.0 13,768.9 13,459.9 13,153.3
pp08a 58.1 18,917.8 17,767.2 16,968.3 16,542.6 16,205.0 15,553.9 14,966.4 14,666.7 14,267.0 13,861.4
protfold 93.5 2,861.7 2,752.4 2,627.0 2,511.2 2,423.2 2,374.9 2,332.9 2,293.0 2,227.6 2,158.0
qiu 62.9 7,034.3 6,881.1 6,287.8 5,966.1 5,738.1 5,477.7 5,290.9 5,115.3 4,950.3 4,746.8
qnet1 46.3 13,450.0 13,111.7 12,810.6 12,551.7 11,963.4 11,294.4 11,610.5 11,042.7 11,150.0 10,318.6
qnet1 o 49.3 13,560.8 13,584.0 13,458.0 12,994.5 12,644.3 12,380.8 12,252.3 11,805.9 11,690.5 11,537.0
rd-rplusc-21 91.3 202.9 204.0 205.6 205.8 203.5 203.7 201.0 197.1 199.9 196.0
rentacar 87.0 6,426.9 6,303.5 5,844.8 5,306.7 4,989.8 4,520.0 4,488.1 4,066.8 3,917.1 3,669.3
rgn 77.8 37,525.7 35,193.9 32,552.5 30,739.8 28,286.8 28,029.0 27,724.7 26,648.7 26,067.8 25,070.0
roll3000 78.8 5,482.2 5,331.1 4,955.0 4,564.0 4,363.1 4,302.0 4,012.3 3,961.3 3,845.6 3,803.5
rout 88.6 18,946.1 17,976.5 17,293.2 16,568.8 16,114.2 15,629.7 15,195.4 14,742.3 14,305.5 14,035.9
set1ch 50.1 8,127.4 7,359.8 7,378.2 6,193.7 5,769.1 5,425.1 5,193.8 4,926.9 4,659.9 4,486.1
stp3d 49.6 87.7 99.0 80.8 90.9 85.9 78.0 72.7 88.1 57.2 75.9
swath 98.8 5,380.1 4,532.8 4,159.5 3,848.6 3,465.4 3,239.1 3,091.6 2,870.3 2,723.1 2,621.5
t1717 86.3 840.1 802.2 700.8 638.4 609.9 595.4 523.0 487.3 451.5 436.4
timtab1 98.4 16,352.4 15,459.5 12,994.7 12,045.7 11,401.8 10,836.2 10,306.6 9,971.3 9,269.2 8,890.9
timtab2 96.9 9,036.7 8,476.8 7,011.5 6,401.9 5,981.0 5,594.5 5,288.8 5,029.8 4,696.2 4,446.8
tr12-30 56.1 4,854.1 4,113.2 3,991.9 3,742.9 3,456.6 3,253.8 3,072.7 2,904.5 2,746.5 2,592.1
vpm2 52.1 26,279.0 23,710.6 24,409.8 23,878.4 23,419.8 22,542.4 21,561.7 21,265.7 20,564.2 19,854.3

Table A.2: Simplex speed for densified MIPs (part 2).
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 1,273.3 1.4 162.5 3.7 6.7 6.0 14.1
lseu 80.0 12.7 48.9 10.9 11.3 6.0 31.9
pk1 86.0 18.9 59.7 66.2 71.0 70.3 58.9
aflow40b 2,710.7 15.7 76.7 53.2 52.9 54.5 158.3
aflow30a 826.8 8.8 209.9 17.6 18.7 25.7 55.8
bell3a 47.2 1.9 11.7 8.8 8.2 7.6 8.3
rgn 173.2 5.8 54.9 16.6 14.1 16.0 17.7
gesa3 o 1,058.7 15.7 42.1 26.7 26.9 28.4 34.6
p2756 2,190.1 44.1 37.6 55.6 53.7 51.4 71.2
glass4 143.6 2.1 8.7 5.0 7.3 4.5 3.9
stein27 13.8 7.5 8.1 7.4 8.4 7.9 16.8
misc07 228.3 7.9 148.1 58.6 64.5 66.9 110.4
tr12-30 575.4 3.6 14.3 4.0 4.1 4.4 9.2
gesa2 o 1,148.2 6.4 18.6 10.1 13.0 11.5 17.7
khb05250 1,247.3 3.2 46.4 50.4 45.7 42.9 11.6
p0033 28.2 3.7 7.5 5.9 6.4 5.9 9.4
misc03 136.3 6.6 67.6 38.6 38.7 40.5 52.2
egout 34.7 2.2 8.3 3.5 3.0 3.4 6.1
mas74 138.1 10.3 53.2 146.5 144.5 136.7 113.0
mitre 4,941.0 4.1 12.4 41.0 38.8 41.8 23.3
momentum1 2,711.6 62.8 11.5 36.7 5.0 45.7 515.1
gen 592.8 9.4 9.3 13.8 17.4 16.5 19.0
liu 64.0 4.8 6.6 4.4 4.8 4.5 7.6
fixnet6 818.7 10.0 62.0 46.6 74.2 57.2 62.5
gesa2 1,067.9 6.6 13.4 10.3 11.9 7.8 13.1
air03 10,753.6 4.7 589.2 1,822.3 6,341.0 2,933.1 5,173.2
fiber 1,030.4 8.9 61.8 11.5 14.2 12.3 24.3
p0201 190.9 28.5 70.4 71.4 85.7 81.6 90.8
mas76 140.3 6.7 22.8 143.1 134.8 130.6 112.7
modglob 315.4 8.0 45.3 14.5 15.8 14.7 15.2
vpm1 151.8 3.5 7.6 5.4 5.9 5.7 6.9
timtab2 165.1 3.6 8.4 4.1 3.4 3.6 7.9
pp08aCUTS 201.7 5.8 10.4 10.3 11.5 17.8 20.4
gesa3 967.0 20.1 21.0 26.7 28.0 22.9 36.9
markshare2 60.0 29.4 29.9 55.5 53.6 53.6 32.8
gesa2-o 1,149.6 6.5 14.9 9.9 15.6 13.2 17.0
dcmulti 493.5 12.7 39.2 44.3 52.1 52.1 51.3
rd-rplusc-21 453.7 4.7 29.9 13.7 22.9 20.5 29.2

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 6,296.7 7.8 42.4 275.7 144.0 269.9 931.0
manna81 617.7 3.0 3.0 3.0 3.0 3.0 3.0
opt1217 767.3 40.3 343.8 146.4 162.6 167.5 196.7
flugpl 13.1 1.7 4.1 4.0 4.5 2.6 6.2
p0548 320.8 6.7 69.8 7.2 7.0 7.3 13.3
l152lav 1,988.4 30.3 266.8 1,213.7 1,374.1 1,358.0 1,038.3
mkc 3,239.6 6.8 190.8 81.7 71.0 76.1 105.4
protfold 1,784.2 85.3 75.3 284.8 917.0 502.5 853.9
roll3000 798.9 21.0 56.9 35.2 70.0 48.5 98.1
arki001 932.4 39.9 124.9 55.0 50.4 54.0 111.8
misc06 1,133.4 24.7 58.2 34.6 28.4 29.8 63.6
nsrand-ipx 6,557.3 627.4 601.1 1,023.1 968.7 960.1 2,587.0
a1c1s1 2,066.6 6.6 24.6 11.5 12.5 15.0 21.8
stein45 24.1 12.6 17.8 12.9 13.5 14.3 24.7
rout 541.8 25.6 88.5 74.0 85.2 79.8 154.7
pp08a 189.6 3.2 7.3 5.6 7.7 7.8 8.2
blend2 262.8 9.9 39.2 34.2 37.5 26.6 48.5
bell5 52.3 2.3 5.0 3.5 2.9 3.2 6.5
qiu 728.8 69.9 204.8 92.2 96.2 83.8 162.9
set1ch 531.7 2.0 22.0 3.1 2.9 3.5 6.0
mod011 6,376.4 5.5 7.0 251.1 257.3 436.8 91.9
mod010 2,461.7 14.5 125.8 308.8 426.1 385.0 700.0
cap6000 5,566.4 53.6 1,916.5 5,847.5 5,862.0 5,862.0 4,789.0
p0282 163.3 9.8 19.5 13.8 13.9 13.9 28.5
noswot 74.4 4.6 8.9 8.3 7.8 7.1 7.7
harp2 1,286.3 30.1 139.9 45.0 53.4 33.4 99.3
qnet1 1,362.7 8.5 250.9 16.4 21.2 18.1 50.3
seymour 920.1 27.8 10.9 34.6 41.5 38.9 585.5
vpm2 145.0 3.0 9.4 5.3 4.0 5.0 6.0
timtab1 94.2 3.1 8.4 3.9 3.6 3.9 6.9
net12 12,261.4 3.8 7.1 5.7 3.6 5.1 22.9
gt2 153.4 5.9 40.1 14.3 5.6 5.6 34.3
mod008 318.4 280.3 184.1 242.4 243.0 245.5 310.5
markshare1 50.0 25.5 27.9 47.8 47.8 47.8 28.0
danoint 509.5 80.0 210.8 50.1 70.7 76.9 266.6
momentum2 2,753.2 23.5 27.4 21.9 24.8 28.3 91.5
enigma 98.3 16.0 76.6 84.8 85.1 85.7 73.7
10teams 1,599.4 39.6 250.8 627.5 659.2 756.9 978.2

Table A.3: Arithmetic mean of absolute primal density of cuts with rank 1.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 1,308.7 34.7 162.5 104.7 148.0 114.3 468.2
lseu 82.1 40.5 48.9 62.5 61.6 62.2 66.8
pk1 86.0 19.0 73.4 78.5 80.9 70.9 63.5
aflow40b 2,711.4 181.3 76.7 405.4 451.7 403.4 1,830.1
aflow30a 837.2 101.7 209.9 249.0 447.2 216.8 590.7
bell3a 67.2 8.5 62.9 13.4 15.6 13.3 10.9
rgn 171.1 13.5 119.5 41.5 55.8 51.2 60.4
gesa3 o 1,055.9 24.5 434.7 49.2 59.2 40.7 240.0
p2756 2,218.7 68.1 37.6 128.6 144.8 121.8 152.1
glass4 226.2 4.4 7.1 10.2 11.2 10.0 14.8
stein27 19.1 8.1 14.2 9.4 17.6 7.6 21.0
misc07 229.1 6.4 148.1 73.3 122.3 99.8 117.7
tr12-30 774.3 59.5 750.2 76.8 97.5 59.9 236.5
gesa2 o 1,153.2 19.1 837.5 35.2 48.5 32.1 57.9
khb05250 1,234.8 5.7 882.3 59.0 85.6 143.1 85.6
p0033 26.3 8.2 12.0 9.5 11.0 12.9 13.5
misc03 135.5 5.3 67.6 60.2 97.8 85.0 77.0
egout 37.7 4.2 33.5 6.4 7.0 11.3 13.2
mas74 137.6 2.5 118.8 150.0 150.0 150.0 112.2
mitre 4,910.3 4.6 12.4 26.6 46.0 38.8 40.5
momentum1 2,711.3 59.1 11.5 124.5 5.0 44.6 617.4
gen 589.6 10.0 4.7 14.1 15.7 16.3 16.4
liu 148.4 11.2 11.2 12.9 22.3 29.4 39.3
fixnet6 851.9 68.2 566.6 203.4 414.6 205.1 504.9
gesa2 1,082.0 15.8 936.9 33.0 71.4 26.4 94.1
air03 10,753.6 4.7 501.3 2,150.9 1,023.7 2,732.2 5,173.2
fiber 1,036.4 32.7 61.8 66.0 113.2 82.3 180.3
p0201 192.8 36.5 70.4 88.9 124.2 84.5 138.8
mas76 141.5 2.0 22.8 150.0 150.0 150.0 112.6
modglob 336.2 15.2 45.3 35.2 106.2 28.9 100.3
vpm1 145.2 8.8 7.6 7.9 16.8 15.2 14.6
timtab2 213.4 21.6 8.4 41.2 96.7 77.4 120.3
pp08aCUTS 222.7 13.3 206.8 31.4 46.7 46.1 109.5
gesa3 1,026.8 22.5 21.0 43.1 55.0 27.4 131.6
markshare2 60.0 33.2 33.2 60.0 60.0 60.0 32.8
gesa2-o 1,151.8 19.9 14.9 37.1 50.6 34.7 137.9
dcmulti 505.3 20.8 269.4 82.0 159.5 64.2 279.2
rd-rplusc-21 464.2 6.3 29.1 23.8 22.9 26.5 156.7

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 6,298.3 8.1 41.0 288.8 394.0 498.3 1,528.0
manna81 583.2 3.0 3.0 3.0 3.0 3.0 3.0
opt1217 767.9 23.7 589.1 74.8 75.0 74.5 199.8
flugpl 13.1 5.6 13.3 8.9 9.2 9.2 8.8
p0548 329.7 11.5 276.9 15.0 14.4 14.1 19.0
l152lav 1,988.1 36.5 266.8 1,655.8 1,683.6 1,386.7 1,416.3
mkc 3,231.9 8.7 162.7 77.4 107.8 107.3 534.4
protfold 1,784.0 75.9 37.0 515.8 912.1 404.7 662.1
roll3000 799.5 31.6 57.3 46.4 92.4 52.8 192.4
arki001 924.7 62.8 125.6 139.7 133.9 111.8 319.8
misc06 1,072.1 29.5 58.2 41.2 40.0 40.4 110.5
nsrand-ipx 6,570.8 627.4 531.4 1,131.6 960.4 960.1 3,973.8
a1c1s1 2,066.6 22.6 24.6 76.9 346.3 189.9 667.5
stein45 34.1 12.9 17.8 17.1 29.2 13.8 31.5
rout 545.8 104.6 88.5 173.3 328.0 127.2 309.5
pp08a 215.9 13.0 42.4 21.9 33.9 25.0 76.1
blend2 271.0 35.5 103.9 82.3 142.9 91.2 73.2
bell5 58.5 10.6 5.0 13.9 17.8 12.4 16.3
qiu 787.7 107.3 378.0 178.0 219.4 98.5 161.2
set1ch 565.9 7.9 22.0 8.6 11.2 12.1 31.4
mod011 6,376.4 5.5 375.2 246.1 336.8 436.8 896.0
mod010 2,461.9 14.1 129.2 358.5 676.6 399.7 1,017.9
cap6000 5,556.7 108.4 1,916.5 3,381.9 5,862.0 5,862.0 4,789.0
p0282 165.9 20.9 19.5 35.0 44.4 36.1 46.7
noswot 79.3 6.1 41.8 8.8 18.9 10.7 14.7
harp2 1,314.2 58.5 170.0 81.8 78.2 93.2 621.8
qnet1 1,385.4 45.3 1,012.9 74.3 136.8 79.3 763.8
seymour 934.6 29.0 11.0 56.0 189.1 38.8 747.4
vpm2 164.5 20.5 9.4 24.4 42.8 22.9 98.7
timtab1 125.4 14.4 8.4 20.8 39.3 37.2 55.8
net12 12,347.2 3.5 7.5 4.7 3.7 4.8 121.7
gt2 166.3 71.6 40.1 65.5 62.5 86.9 108.9
mod008 317.5 113.5 294.0 312.9 317.2 317.1 133.0
markshare1 50.0 27.9 27.9 50.0 50.0 50.0 27.9
danoint 511.2 79.1 210.8 149.1 321.0 132.3 304.7
momentum2 2,752.7 23.4 26.8 34.6 21.7 31.6 65.4
enigma 99.7 17.4 79.8 93.1 95.5 91.2 83.7
10teams 1,599.4 50.0 243.4 518.7 659.0 695.3 995.6

Table A.4: Arithmetic mean of absolute primal density of cuts with arbitrary rank.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 95.7 0.1 12.2 0.3 0.5 0.4 1.1
lseu 91.9 14.6 56.2 12.6 13.0 6.9 36.6
pk1 100.0 21.9 69.5 77.0 82.5 81.8 68.5
aflow40b 99.4 0.6 2.8 1.9 1.9 2.0 5.8
aflow30a 98.2 1.0 24.9 2.1 2.2 3.0 6.6
bell3a 51.3 2.0 12.7 9.6 8.9 8.3 9.0
rgn 99.0 3.3 31.4 9.5 8.0 9.1 10.1
gesa3 o 98.0 1.4 3.9 2.5 2.5 2.6 3.2
p2756 92.4 1.9 1.6 2.3 2.3 2.2 3.0
glass4 45.3 0.7 2.7 1.6 2.3 1.4 1.2
stein27 50.9 27.9 29.9 27.5 31.0 29.3 62.1
misc07 98.4 3.4 63.8 25.3 27.8 28.9 47.6
tr12-30 55.3 0.3 1.4 0.4 0.4 0.4 0.9
gesa2 o 97.6 0.5 1.6 0.9 1.1 1.0 1.5
khb05250 96.0 0.2 3.6 3.9 3.5 3.3 0.9
p0033 93.9 12.3 25.1 19.8 21.2 19.7 31.3
misc03 98.7 4.8 49.0 28.0 28.0 29.3 37.8
egout 70.8 4.4 17.0 7.2 6.1 7.0 12.4
mas74 92.0 6.9 35.5 97.7 96.3 91.1 75.4
mitre 100.0 0.1 0.3 0.8 0.8 0.8 0.5
momentum1 98.6 2.3 0.4 1.3 0.2 1.7 18.7
gen 92.9 1.5 1.5 2.2 2.7 2.6 3.0
liu 5.5 0.4 0.6 0.4 0.4 0.4 0.7
fixnet6 93.4 1.1 7.1 5.3 8.5 6.5 7.1
gesa2 90.8 0.6 1.1 0.9 1.0 0.7 1.1
air03 100.0 0.0 5.5 16.9 59.0 27.3 48.1
fiber 98.5 0.9 5.9 1.1 1.4 1.2 2.3
p0201 97.9 14.6 36.1 36.6 44.0 41.8 46.5
mas76 93.6 4.5 15.2 95.4 89.9 87.0 75.2
modglob 82.1 2.1 11.8 3.8 4.1 3.8 4.0
vpm1 83.4 1.9 4.2 3.0 3.2 3.1 3.8
timtab2 48.4 1.0 2.5 1.2 1.0 1.1 2.3
pp08aCUTS 85.1 2.4 4.4 4.3 4.8 7.5 8.6
gesa3 89.5 1.9 1.9 2.5 2.6 2.1 3.4
markshare2 100.0 49.1 49.9 92.6 89.3 89.3 54.6
gesa2-o 97.8 0.6 1.3 0.8 1.3 1.1 1.4
dcmulti 93.3 2.4 7.4 8.4 9.9 9.8 9.7
rd-rplusc-21 87.2 0.9 5.7 2.6 4.4 3.9 5.6

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 99.6 0.1 0.7 4.4 2.3 4.3 14.7
manna81 18.6 0.1 0.1 0.1 0.1 0.1 0.1
opt1217 99.8 5.2 44.7 19.0 21.1 21.8 25.6
flugpl 93.3 12.4 29.5 28.4 32.2 18.6 44.5
p0548 78.4 1.6 17.1 1.8 1.7 1.8 3.2
l152lav 100.0 1.5 13.4 61.0 69.1 68.3 52.2
mkc 99.0 0.2 5.8 2.5 2.2 2.3 3.2
protfold 97.2 4.7 4.1 15.5 50.0 27.4 46.5
roll3000 92.7 2.4 6.6 4.1 8.1 5.6 11.4
arki001 97.2 4.2 13.0 5.7 5.3 5.6 11.7
misc06 90.0 2.0 4.6 2.7 2.3 2.4 5.0
nsrand-ipx 99.4 9.5 9.1 15.5 14.7 14.5 39.2
a1c1s1 82.9 0.3 1.0 0.5 0.5 0.6 0.9
stein45 53.6 28.0 39.6 28.7 30.1 31.7 54.9
rout 97.6 4.6 15.9 13.3 15.4 14.4 27.9
pp08a 81.0 1.4 3.1 2.4 3.3 3.3 3.5
blend2 85.9 3.2 12.8 11.2 12.3 8.7 15.8
bell5 65.4 2.9 6.3 4.4 3.6 4.1 8.1
qiu 86.8 8.3 24.4 11.0 11.5 10.0 19.4
set1ch 82.3 0.3 3.4 0.5 0.5 0.5 0.9
mod011 98.1 0.1 0.1 3.9 4.0 6.7 1.4
mod010 99.9 0.6 5.1 12.5 17.3 15.6 28.4
cap6000 94.9 0.9 32.7 99.7 99.9 99.9 81.7
p0282 81.7 4.9 9.7 6.9 6.9 6.9 14.3
noswot 62.0 3.8 7.4 6.9 6.5 5.9 6.4
harp2 93.7 2.2 10.2 3.3 3.9 2.4 7.2
qnet1 96.2 0.6 17.7 1.2 1.5 1.3 3.6
seymour 78.2 2.4 0.9 2.9 3.5 3.3 49.8
vpm2 80.1 1.6 5.2 2.9 2.2 2.8 3.3
timtab1 46.9 1.5 4.2 2.0 1.8 2.0 3.5
net12 97.9 0.0 0.1 0.0 0.0 0.0 0.2
gt2 88.7 3.4 23.2 8.2 3.2 3.2 19.9
mod008 99.8 87.9 57.7 76.0 76.2 77.0 97.3
markshare1 100.0 50.9 55.9 95.5 95.5 95.5 56.0
danoint 99.3 15.6 41.1 9.8 13.8 15.0 52.0
momentum2 99.0 0.8 1.0 0.8 0.9 1.0 3.3
enigma 98.3 16.0 76.6 84.8 85.1 85.7 73.7
10teams 100.0 2.5 15.7 39.2 41.2 47.3 61.1

Table A.5: Arithmetic mean of relative primal density of cuts with rank 1 in %.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 98.4 2.6 12.2 7.9 11.1 8.6 35.2
lseu 94.3 46.5 56.2 71.9 70.8 71.5 76.8
pk1 100.0 22.1 85.4 91.2 94.1 82.4 73.9
aflow40b 99.4 6.6 2.8 14.9 16.6 14.8 67.1
aflow30a 99.4 12.1 24.9 29.6 53.1 25.7 70.1
bell3a 73.0 9.2 68.4 14.6 16.9 14.5 11.9
rgn 97.7 7.7 68.3 23.7 31.9 29.3 34.5
gesa3 o 97.8 2.3 40.2 4.6 5.5 3.8 22.2
p2756 93.6 2.9 1.6 5.4 6.1 5.1 6.4
glass4 71.4 1.4 2.2 3.2 3.5 3.1 4.7
stein27 70.7 30.1 52.7 34.8 65.3 28.1 77.7
misc07 98.8 2.7 63.8 31.6 52.7 43.0 50.7
tr12-30 74.5 5.7 72.1 7.4 9.4 5.8 22.7
gesa2 o 98.1 1.6 71.2 3.0 4.1 2.7 4.9
khb05250 95.1 0.4 67.9 4.5 6.6 11.0 6.6
p0033 87.7 27.4 40.0 31.7 36.8 42.9 45.1
misc03 98.2 3.8 49.0 43.6 70.9 61.6 55.8
egout 77.0 8.6 68.4 13.0 14.3 23.1 27.0
mas74 91.7 1.7 79.2 100.0 100.0 100.0 74.8
mitre 99.4 0.1 0.3 0.5 0.9 0.8 0.8
momentum1 98.6 2.1 0.4 4.5 0.2 1.6 22.4
gen 92.4 1.6 0.7 2.2 2.5 2.6 2.6
liu 12.9 1.0 1.0 1.1 1.9 2.5 3.4
fixnet6 97.1 7.8 64.6 23.2 47.3 23.4 57.6
gesa2 92.0 1.3 79.7 2.8 6.1 2.2 8.0
air03 100.0 0.0 4.7 20.0 9.5 25.4 48.1
fiber 99.1 3.1 5.9 6.3 10.8 7.9 17.2
p0201 98.9 18.7 36.1 45.6 63.7 43.4 71.2
mas76 94.3 1.3 15.2 100.0 100.0 100.0 75.0
modglob 87.6 4.0 11.8 9.2 27.7 7.5 26.1
vpm1 79.8 4.8 4.2 4.3 9.2 8.4 8.0
timtab2 62.6 6.3 2.5 12.1 28.3 22.7 35.3
pp08aCUTS 94.0 5.6 87.2 13.2 19.7 19.5 46.2
gesa3 95.1 2.1 1.9 4.0 5.1 2.5 12.2
markshare2 100.0 55.4 55.4 100.0 100.0 100.0 54.7
gesa2-o 97.9 1.7 1.3 3.2 4.3 2.9 11.7
dcmulti 95.5 3.9 50.9 15.5 30.1 12.1 52.8
rd-rplusc-21 89.3 1.2 5.6 4.6 4.4 5.1 30.1

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 99.7 0.1 0.6 4.6 6.2 7.9 24.2
manna81 17.6 0.1 0.1 0.1 0.1 0.1 0.1
opt1217 99.9 3.1 76.6 9.7 9.8 9.7 26.0
flugpl 93.5 40.1 94.9 63.9 65.6 65.8 62.9
p0548 80.6 2.8 67.7 3.7 3.5 3.4 4.6
l152lav 100.0 1.8 13.4 83.2 84.6 69.7 71.2
mkc 98.7 0.3 5.0 2.4 3.3 3.3 16.3
protfold 97.2 4.1 2.0 28.1 49.7 22.1 36.1
roll3000 92.8 3.7 6.6 5.4 10.7 6.1 22.3
arki001 96.4 6.6 13.1 14.6 14.0 11.7 33.3
misc06 85.1 2.3 4.6 3.3 3.2 3.2 8.8
nsrand-ipx 99.6 9.5 8.1 17.1 14.6 14.5 60.2
a1c1s1 82.9 0.9 1.0 3.1 13.9 7.6 26.8
stein45 75.8 28.7 39.6 38.0 64.8 30.6 70.0
rout 98.3 18.8 15.9 31.2 59.1 22.9 55.8
pp08a 92.2 5.6 18.1 9.4 14.5 10.7 32.5
blend2 88.6 11.6 33.9 26.9 46.7 29.8 23.9
bell5 73.1 13.3 6.3 17.4 22.2 15.5 20.3
qiu 93.8 12.8 45.0 21.2 26.1 11.7 19.2
set1ch 87.6 1.2 3.4 1.3 1.7 1.9 4.9
mod011 98.1 0.1 5.8 3.8 5.2 6.7 13.8
mod010 100.0 0.6 5.2 14.6 27.5 16.2 41.3
cap6000 94.7 1.8 32.7 57.7 99.9 99.9 81.7
p0282 82.9 10.4 9.7 17.5 22.2 18.1 23.3
noswot 66.1 5.1 34.8 7.4 15.7 8.9 12.3
harp2 95.7 4.3 12.4 6.0 5.7 6.8 45.3
qnet1 97.8 3.2 71.5 5.2 9.7 5.6 53.9
seymour 79.5 2.5 0.9 4.8 16.1 3.3 63.6
vpm2 90.9 11.3 5.2 13.5 23.6 12.6 54.5
timtab1 62.4 7.2 4.2 10.4 19.6 18.5 27.7
net12 98.6 0.0 0.1 0.0 0.0 0.0 1.0
gt2 96.1 41.4 23.2 37.9 36.1 50.2 63.0
mod008 99.5 35.6 92.2 98.1 99.4 99.4 41.7
markshare1 100.0 55.8 55.8 100.0 100.0 100.0 55.8
danoint 99.6 15.4 41.1 29.1 62.6 25.8 59.4
momentum2 99.0 0.8 1.0 1.2 0.8 1.1 2.4
enigma 99.7 17.4 79.8 93.1 95.5 91.2 83.7
10teams 100.0 3.1 15.2 32.4 41.2 43.5 62.2

Table A.6: Arithmetic mean of relative primal density of cuts with arbitrary rank in %.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 1,103.7 4.4 192.2 4.4 5.5 8.2 48.9
lseu 72.4 12.2 25.4 7.1 6.6 4.1 17.5
pk1 76.9 66.6 48.8 40.1 42.6 42.8 51.6
aflow40b 1,841.9 57.6 81.1 36.5 39.6 38.4 158.0
aflow30a 517.0 25.3 182.2 14.6 16.5 21.2 56.3
bell3a 57.1 6.7 11.1 7.2 7.3 7.3 12.4
rgn 134.5 23.2 33.3 16.4 15.1 15.7 25.1
gesa3 o 865.7 24.7 37.2 21.8 20.9 21.8 34.8
p2756 2,168.6 30.8 23.8 32.1 32.1 29.6 43.1
glass4 137.2 2.0 6.1 4.2 5.5 3.3 3.8
stein27 7.3 2.7 3.6 2.7 3.1 2.9 8.8
misc07 203.1 40.8 68.7 22.3 23.8 23.2 79.2
tr12-30 407.4 4.7 10.3 4.7 5.1 5.3 11.2
gesa2 o 977.8 10.5 15.8 9.2 11.2 9.0 18.7
khb05250 1,140.0 41.7 52.4 48.3 43.0 42.6 72.5
p0033 21.1 6.2 5.7 3.6 3.7 3.5 6.4
misc03 120.8 15.7 42.1 15.5 16.0 15.5 43.3
egout 30.7 3.2 4.5 2.7 2.7 2.8 5.8
mas74 145.6 108.2 123.5 67.5 64.9 62.4 91.3
mitre 4,494.4 33.7 13.1 27.5 26.8 26.9 27.7
momentum1 2,526.5 1,087.2 13.4 30.8 5.2 34.6 503.3
gen 583.4 29.4 9.0 10.2 12.2 11.6 12.9
liu 55.4 3.3 4.7 2.9 3.1 2.9 4.8
fixnet6 778.2 27.0 72.5 32.6 45.4 39.3 77.8
gesa2 979.5 11.2 14.6 9.1 9.6 9.3 17.1
air03 10,561.5 1,598.3 872.8 459.1 515.0 636.7 4,799.1
fiber 940.1 14.6 52.0 11.9 13.8 13.0 28.7
p0201 165.0 58.5 53.7 20.9 21.0 20.3 55.8
mas76 146.0 92.5 139.1 65.7 57.4 56.1 93.6
modglob 282.8 11.4 42.1 12.2 13.2 12.0 15.5
vpm1 143.6 6.5 7.3 5.0 5.5 5.1 7.5
timtab2 121.9 2.8 7.6 2.5 2.5 2.6 5.7
pp08aCUTS 140.8 8.8 9.4 7.8 8.9 13.1 18.3
gesa3 870.3 28.3 21.3 22.1 22.9 23.7 40.1
markshare2 48.8 38.6 38.6 27.8 26.8 26.8 43.6
gesa2-o 1,001.0 10.4 12.5 9.0 13.4 10.0 18.6
dcmulti 345.7 51.4 37.1 27.7 31.0 30.6 50.8
rd-rplusc-21 349.4 19.4 30.5 8.5 12.9 18.6 30.0

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 4,944.6 466.5 27.4 244.3 125.5 230.7 914.4
manna81 455.9 1.5 1.5 1.5 1.5 1.5 1.5
opt1217 728.3 460.3 236.4 84.5 95.2 98.8 136.3
flugpl 10.3 2.1 2.3 2.1 2.6 2.1 3.9
p0548 308.0 10.9 31.0 8.1 8.4 7.9 15.2
l152lav 1,891.6 1,280.6 291.8 638.6 653.4 661.1 1,160.1
mkc 3,116.9 129.1 91.5 64.5 53.3 58.7 148.1
protfold 469.1 376.7 49.1 151.2 343.3 102.6 1,012.6
roll3000 702.1 66.7 22.6 11.3 12.7 11.9 57.6
arki001 614.9 138.4 103.0 31.2 28.2 29.1 105.4
misc06 1,019.0 52.0 42.0 22.4 19.0 20.2 57.5
nsrand-ipx 6,419.4 256.4 246.5 335.8 293.6 292.5 929.4
a1c1s1 1,444.8 9.6 6.7 11.1 12.2 14.6 24.9
stein45 13.9 5.5 9.2 5.7 6.0 6.4 12.3
rout 493.3 120.2 99.3 49.0 58.8 56.3 216.9
pp08a 134.9 5.6 7.8 5.1 6.5 7.2 9.4
blend2 256.8 58.6 35.9 21.5 25.3 16.8 47.1
bell5 48.3 2.3 4.8 3.1 2.9 3.0 6.1
qiu 535.5 167.6 185.9 80.6 83.7 76.2 147.9
set1ch 463.6 3.6 4.1 3.0 3.1 3.2 6.5
mod011 4,248.6 83.3 8.3 187.7 191.7 329.3 278.8
mod010 1,949.6 509.6 159.1 252.9 271.5 270.4 717.8
cap6000 5,662.0 2,526.4 2,965.3 2,939.8 2,932.5 2,932.5 3,469.0
p0282 155.6 8.6 17.3 6.0 5.7 5.7 13.2
noswot 71.4 5.9 6.4 5.2 5.0 5.3 9.7
harp2 1,024.3 185.3 77.5 60.3 64.2 52.8 189.4
qnet1 1,213.1 44.7 195.5 26.3 29.3 25.7 88.9
seymour 655.3 10.8 5.4 13.4 15.1 14.5 253.8
vpm2 127.3 5.9 10.0 5.1 4.7 5.5 6.8
timtab1 70.2 2.3 7.1 2.4 2.6 2.7 5.0
net12 11,966.7 6.4 5.7 5.4 3.0 3.9 34.5
gt2 154.3 8.2 27.5 5.1 4.4 4.3 27.7
mod008 311.3 116.8 92.8 121.5 121.8 123.1 155.4
markshare1 40.7 33.4 34.8 23.9 23.9 23.9 36.0
danoint 420.2 395.6 182.4 26.0 36.4 36.3 266.5
momentum2 2,452.9 203.4 29.4 18.6 21.9 25.2 108.0
enigma 92.5 77.7 55.8 47.5 48.0 49.3 51.0
10teams 1,505.6 333.0 241.2 352.1 359.2 406.7 1,045.8

Table A.7: Arithmetic mean of absolute dual density of cuts with rank 1.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 1,186.1 174.4 192.2 94.8 121.0 101.7 648.8
lseu 70.7 42.1 25.4 31.4 28.8 29.9 37.8
pk1 76.3 68.7 143.2 42.0 42.6 42.8 50.2
aflow40b 2,522.4 443.0 81.1 189.6 185.6 223.3 1,511.9
aflow30a 757.5 173.8 182.2 124.5 221.2 121.6 429.9
bell3a 63.8 48.9 159.5 11.8 13.7 11.9 15.8
rgn 144.3 57.9 233.3 18.5 17.9 17.5 50.1
gesa3 o 860.1 30.5 1,370.8 23.9 27.5 23.3 168.6
p2756 2,194.2 253.9 23.8 60.2 55.8 44.9 104.5
glass4 209.3 7.9 5.2 7.0 8.2 7.6 16.5
stein27 11.5 3.1 66.6 3.7 8.3 2.7 11.1
misc07 204.4 31.5 68.7 23.6 29.6 37.5 81.0
tr12-30 643.5 99.5 2,773.6 53.7 64.4 50.1 208.9
gesa2 o 992.6 24.1 2,681.8 19.3 24.1 19.7 41.4
khb05250 1,096.5 58.0 1,900.6 53.1 69.4 127.3 282.7
p0033 20.7 14.1 9.1 6.1 6.0 6.7 8.2
misc03 119.9 16.4 42.1 21.3 38.6 33.4 50.2
egout 32.7 5.1 90.7 4.0 4.5 7.4 9.0
mas74 147.1 107.2 251.8 71.4 72.2 69.3 93.9
mitre 3,445.5 35.7 13.1 16.8 26.6 23.6 38.3
momentum1 2,526.3 1,018.0 13.4 85.4 5.2 32.1 569.9
gen 577.2 45.4 3.8 9.1 8.9 9.8 11.4
liu 91.5 5.8 6.8 5.6 8.8 12.3 15.5
fixnet6 820.4 96.5 1,457.1 91.3 180.6 90.5 357.2
gesa2 977.1 76.7 3,078.8 20.9 37.2 20.3 72.9
air03 10,561.5 1,598.3 780.3 623.5 503.0 630.8 4,799.1
fiber 940.0 106.1 52.0 37.9 57.0 46.5 177.8
p0201 163.6 70.0 53.7 28.3 43.1 22.4 85.5
mas76 147.6 120.8 139.1 73.7 73.2 72.7 93.7
modglob 298.9 18.0 42.1 18.0 54.4 18.2 73.4
vpm1 137.0 17.6 7.3 5.7 9.1 8.3 12.1
timtab2 153.0 14.3 7.6 23.4 52.1 42.9 70.7
pp08aCUTS 172.9 15.4 780.1 17.4 25.8 28.4 80.3
gesa3 904.1 103.4 21.3 25.9 30.2 21.3 108.0
markshare2 48.7 43.8 43.4 30.0 30.0 30.0 43.6
gesa2-o 995.3 25.1 12.5 19.7 25.3 21.1 96.1
dcmulti 380.7 67.4 704.6 33.4 65.0 31.7 178.9
rd-rplusc-21 343.1 27.6 31.6 12.2 12.9 19.0 104.4

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 5,326.2 318.7 26.4 146.3 145.9 256.4 1,262.6
manna81 431.8 1.5 1.5 1.5 1.5 1.5 1.5
opt1217 727.3 444.8 1,003.9 33.5 30.9 30.8 140.2
flugpl 9.8 4.4 49.3 4.5 4.5 4.3 4.4
p0548 307.2 13.3 672.7 9.5 9.0 9.4 14.8
l152lav 1,893.7 1,337.2 291.8 831.4 323.5 657.8 1,189.7
mkc 3,042.2 132.1 198.0 48.7 52.6 55.0 271.3
protfold 465.8 293.6 38.0 254.6 342.6 86.4 498.1
roll3000 704.9 127.1 22.9 17.1 15.9 13.0 112.0
arki001 629.8 222.8 103.4 69.6 62.5 57.1 257.8
misc06 1,004.0 58.1 42.0 21.6 19.4 23.4 85.0
nsrand-ipx 6,438.6 256.4 209.9 379.4 292.6 292.5 1,548.6
a1c1s1 1,444.8 30.4 6.7 50.3 194.5 136.3 484.6
stein45 21.6 5.7 9.2 7.9 14.3 6.1 16.8
rout 491.5 328.6 99.3 90.5 160.4 75.6 291.9
pp08a 171.2 14.4 105.0 13.8 19.9 17.0 56.9
blend2 257.1 143.0 250.5 43.4 57.9 49.1 52.1
bell5 47.7 9.8 4.8 8.1 9.9 7.5 9.7
qiu 578.3 201.7 1,183.4 113.7 127.0 87.1 147.9
set1ch 487.2 9.6 4.1 6.2 7.6 9.0 25.4
mod011 4,248.6 83.3 903.3 184.5 189.2 329.3 1,558.4
mod010 1,963.5 430.7 159.5 191.8 263.1 266.1 830.4
cap6000 5,744.8 4,161.1 2,965.3 1,796.2 2,932.5 2,932.5 3,469.0
p0282 160.0 28.4 17.3 17.9 22.1 19.3 28.8
noswot 75.0 7.8 142.6 5.1 11.2 6.7 14.6
harp2 1,075.2 466.7 98.9 61.1 58.1 68.6 536.4
qnet1 1,273.2 191.2 2,182.0 67.9 101.6 79.3 786.2
seymour 696.7 11.6 5.4 23.0 82.7 14.7 325.4
vpm2 143.9 29.0 10.0 12.9 21.3 12.7 67.0
timtab1 91.2 9.0 7.1 11.3 21.1 19.8 33.5
net12 12,109.7 5.8 6.2 3.3 3.3 4.4 234.4
gt2 155.4 69.8 27.5 39.4 35.3 46.4 63.8
mod008 311.9 427.9 556.2 157.2 158.9 158.9 247.7
markshare1 39.7 36.1 35.8 24.7 25.0 25.0 35.8
danoint 439.5 407.3 182.4 76.6 155.5 70.2 311.4
momentum2 2,453.3 198.6 28.6 24.2 18.4 23.5 74.8
enigma 92.5 88.1 59.9 47.4 48.9 48.3 52.1
10teams 1,539.3 396.6 234.0 283.9 345.9 372.3 1,035.7

Table A.8: Arithmetic mean of absolute dual density of cuts with arbitrary rank.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 35.5 0.1 6.2 0.1 0.2 0.3 1.6
lseu 35.9 6.1 12.6 3.5 3.3 2.0 8.7
pk1 33.1 28.7 21.0 17.3 18.4 18.4 22.2
aflow40b 26.4 0.8 1.2 0.5 0.6 0.6 2.3
aflow30a 23.3 1.1 8.2 0.7 0.7 1.0 2.5
bell3a 22.7 2.7 4.4 2.9 2.9 2.9 4.9
rgn 34.1 5.9 8.5 4.2 3.8 4.0 6.4
gesa3 o 25.6 0.7 1.1 0.6 0.6 0.6 1.0
p2756 34.8 0.5 0.4 0.5 0.5 0.5 0.7
glass4 13.0 0.2 0.6 0.4 0.5 0.3 0.4
stein27 4.2 1.6 2.1 1.6 1.8 1.7 5.1
misc07 28.6 5.8 9.7 3.1 3.4 3.3 11.2
tr12-30 13.0 0.1 0.3 0.2 0.2 0.2 0.4
gesa2 o 27.0 0.3 0.4 0.3 0.3 0.2 0.5
khb05250 41.1 1.5 1.9 1.7 1.6 1.5 2.6
p0033 28.6 8.4 7.7 4.9 5.0 4.7 8.7
misc03 30.4 4.0 10.6 3.9 4.0 3.9 10.9
egout 21.3 2.2 3.1 1.8 1.9 2.0 4.1
mas74 46.5 34.6 39.5 21.6 20.7 19.9 29.2
mitre 38.5 0.3 0.1 0.2 0.2 0.2 0.2
momentum1 11.5 5.0 0.1 0.1 0.0 0.2 2.3
gen 33.5 1.7 0.5 0.6 0.7 0.7 0.7
liu 1.2 0.1 0.1 0.1 0.1 0.1 0.1
fixnet6 33.4 1.2 3.1 1.4 2.0 1.7 3.3
gesa2 26.5 0.3 0.4 0.2 0.3 0.3 0.5
air03 48.5 7.3 4.0 2.1 2.4 2.9 22.1
fiber 35.7 0.6 2.0 0.5 0.5 0.5 1.1
p0201 31.9 11.3 10.4 4.0 4.1 3.9 10.8
mas76 46.8 29.6 44.6 21.1 18.4 18.0 30.0
modglob 25.4 1.0 3.8 1.1 1.2 1.1 1.4
vpm1 27.9 1.3 1.4 1.0 1.1 1.0 1.5
timtab2 9.6 0.2 0.6 0.2 0.2 0.2 0.5
pp08aCUTS 21.0 1.3 1.4 1.2 1.3 2.0 2.7
gesa3 25.2 0.8 0.6 0.6 0.7 0.7 1.2
markshare2 38.4 30.4 30.4 21.9 21.1 21.1 34.3
gesa2-o 27.6 0.3 0.3 0.2 0.4 0.3 0.5
dcmulti 24.6 3.7 2.6 2.0 2.2 2.2 3.6
rd-rplusc-21 1.3 0.1 0.1 0.0 0.0 0.1 0.1

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 37.6 3.5 0.2 1.9 1.0 1.8 7.0
manna81 3.5 0.0 0.0 0.0 0.0 0.0 0.0
opt1217 44.1 27.9 14.3 5.1 5.8 6.0 8.3
flugpl 23.0 4.7 5.1 4.6 5.8 4.6 8.6
p0548 29.1 1.0 2.9 0.8 0.8 0.7 1.4
l152lav 45.4 30.7 7.0 15.3 15.7 15.9 27.8
mkc 39.8 1.6 1.2 0.8 0.7 0.7 1.9
protfold 8.1 6.5 0.8 2.6 5.9 1.8 17.4
roll3000 21.9 2.1 0.7 0.4 0.4 0.4 1.8
arki001 22.7 5.1 3.8 1.2 1.0 1.1 3.9
misc06 35.3 1.8 1.5 0.8 0.7 0.7 2.0
nsrand-ipx 46.7 1.9 1.8 2.4 2.1 2.1 6.8
a1c1s1 17.4 0.1 0.1 0.1 0.1 0.2 0.3
stein45 3.3 1.3 2.2 1.4 1.4 1.5 2.9
rout 34.5 8.4 6.9 3.4 4.1 3.9 15.2
pp08a 24.3 1.0 1.4 0.9 1.2 1.3 1.7
blend2 30.6 7.0 4.3 2.6 3.0 2.0 5.6
bell5 22.9 1.1 2.3 1.5 1.4 1.4 2.9
qiu 17.8 5.6 6.2 2.7 2.8 2.5 4.9
set1ch 24.4 0.2 0.2 0.2 0.2 0.2 0.3
mod011 27.1 0.5 0.1 1.2 1.2 2.1 1.8
mod010 37.4 9.8 3.1 4.9 5.2 5.2 13.8
cap6000 41.2 18.4 21.6 21.4 21.4 21.4 25.3
p0282 27.7 1.5 3.1 1.1 1.0 1.0 2.4
noswot 17.3 1.4 1.6 1.3 1.2 1.3 2.4
harp2 35.1 6.3 2.7 2.1 2.2 1.8 6.5
qnet1 35.6 1.3 5.7 0.8 0.9 0.8 2.6
seymour 9.3 0.2 0.1 0.2 0.2 0.2 3.6
vpm2 24.9 1.1 1.9 1.0 0.9 1.1 1.3
timtab1 9.5 0.3 1.0 0.3 0.3 0.4 0.7
net12 31.3 0.0 0.0 0.0 0.0 0.0 0.1
gt2 41.3 2.2 7.3 1.4 1.2 1.1 7.4
mod008 48.3 18.1 14.4 18.9 18.9 19.1 24.1
markshare1 38.3 31.5 32.9 22.6 22.6 22.6 34.0
danoint 23.1 21.8 10.0 1.4 2.0 2.0 14.7
momentum2 11.2 0.9 0.1 0.1 0.1 0.1 0.5
enigma 38.2 32.1 23.1 19.6 19.8 20.4 21.1
10teams 42.7 9.4 6.8 10.0 10.2 11.5 29.6

Table A.9: Arithmetic mean of relative dual density of cuts with rank 1 in %.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 37.1 5.4 6.2 2.9 3.7 3.2 20.0
lseu 31.5 18.4 12.6 13.8 12.7 13.5 16.7
pk1 32.4 28.1 60.2 17.0 17.3 17.2 20.0
aflow40b 35.4 5.9 1.2 2.5 2.5 3.0 20.7
aflow30a 30.8 6.7 8.2 4.8 8.5 4.8 17.1
bell3a 25.7 19.6 65.2 4.8 5.5 4.8 6.4
rgn 30.9 11.1 54.7 3.9 3.8 3.8 10.5
gesa3 o 24.7 0.8 39.4 0.7 0.8 0.6 4.7
p2756 37.1 4.6 0.4 1.1 1.0 0.8 1.9
glass4 17.6 0.6 0.5 0.5 0.7 0.6 1.2
stein27 6.4 1.6 37.5 2.0 4.4 1.4 6.3
misc07 28.7 3.9 9.7 2.9 3.8 4.6 11.2
tr12-30 16.7 2.5 71.8 1.4 1.6 1.3 5.2
gesa2 o 26.3 0.6 71.1 0.5 0.6 0.5 1.1
khb05250 38.8 2.0 67.6 1.9 2.4 4.5 9.9
p0033 22.6 14.3 11.9 6.6 6.6 7.1 8.8
misc03 29.6 3.1 10.6 4.4 8.3 6.9 12.0
egout 20.0 3.0 56.8 2.4 2.7 4.1 5.1
mas74 46.0 30.5 79.3 22.5 22.7 21.8 29.9
mitre 29.4 0.3 0.1 0.1 0.2 0.2 0.3
momentum1 11.5 4.6 0.1 0.4 0.0 0.1 2.6
gen 32.9 2.6 0.2 0.5 0.5 0.6 0.7
liu 1.8 0.1 0.1 0.1 0.2 0.2 0.3
fixnet6 33.7 3.9 61.9 3.7 7.3 3.7 14.3
gesa2 25.5 1.9 79.6 0.5 0.9 0.5 1.8
air03 48.5 7.3 3.6 2.9 2.3 2.9 22.1
fiber 34.6 3.9 2.0 1.4 2.1 1.7 6.5
p0201 30.2 12.3 10.4 5.2 7.8 4.1 15.6
mas76 46.6 35.8 44.6 23.2 23.1 22.9 29.3
modglob 24.5 1.4 3.8 1.4 4.2 1.4 5.8
vpm1 24.8 3.0 1.4 1.0 1.5 1.4 2.1
timtab2 8.7 0.7 0.6 1.2 2.5 2.1 3.5
pp08aCUTS 20.0 1.7 86.7 1.9 2.8 3.2 9.1
gesa3 25.6 2.8 0.6 0.7 0.8 0.6 3.0
markshare2 37.0 33.7 33.5 23.1 23.1 23.1 33.6
gesa2-o 26.4 0.6 0.3 0.5 0.7 0.5 2.4
dcmulti 25.0 4.0 48.7 2.1 4.1 2.0 11.4
rd-rplusc-21 1.3 0.1 0.1 0.0 0.0 0.1 0.4

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 40.3 2.4 0.2 1.1 1.1 1.9 9.5
manna81 3.3 0.0 0.0 0.0 0.0 0.0 0.0
opt1217 42.9 26.2 60.3 2.0 1.8 1.8 8.3
flugpl 17.0 7.3 91.8 7.4 7.9 7.5 7.7
p0548 27.4 1.2 60.6 0.8 0.8 0.8 1.3
l152lav 45.3 31.7 7.0 19.5 7.8 15.4 28.3
mkc 38.0 1.6 2.5 0.6 0.7 0.7 3.4
protfold 8.0 4.8 0.7 4.2 5.9 1.4 8.3
roll3000 21.2 3.5 0.7 0.5 0.5 0.4 3.3
arki001 22.9 7.6 3.8 2.4 2.2 2.0 9.0
misc06 32.8 1.9 1.5 0.7 0.6 0.8 2.7
nsrand-ipx 46.6 1.9 1.5 2.7 2.1 2.1 11.2
a1c1s1 17.4 0.3 0.1 0.6 2.1 1.5 5.4
stein45 5.0 1.3 2.2 1.7 3.2 1.4 3.9
rout 32.1 19.3 6.9 5.6 9.8 4.7 18.3
pp08a 22.6 1.7 14.7 1.6 2.4 2.0 6.9
blend2 29.8 16.3 29.6 5.0 6.6 5.6 6.0
bell5 19.5 3.7 2.3 3.2 3.9 3.0 3.8
qiu 18.9 6.5 39.4 3.7 4.2 2.9 4.9
set1ch 23.0 0.4 0.2 0.3 0.3 0.4 1.2
mod011 27.1 0.5 5.7 1.2 1.2 2.1 9.8
mod010 37.7 8.2 3.1 3.6 5.0 5.0 15.7
cap6000 47.5 34.4 21.6 14.8 21.4 21.4 25.3
p0282 26.8 4.6 3.1 3.0 3.5 3.2 4.8
noswot 16.6 1.7 31.6 1.1 2.3 1.4 3.2
harp2 36.6 15.4 3.4 2.0 1.9 2.3 17.8
qnet1 36.9 5.5 63.7 1.9 2.9 2.3 22.4
seymour 9.9 0.2 0.1 0.3 1.1 0.2 4.6
vpm2 22.9 4.4 1.9 2.0 3.2 2.0 10.2
timtab1 9.1 0.8 1.0 1.0 1.8 1.8 3.0
net12 31.6 0.0 0.0 0.0 0.0 0.0 0.6
gt2 38.3 17.0 7.3 9.8 8.8 11.3 15.6
mod008 47.7 65.0 85.5 24.2 24.5 24.5 37.9
markshare1 36.2 33.3 33.0 22.8 23.0 23.0 33.0
danoint 22.8 21.5 10.0 3.8 7.8 3.5 15.9
momentum2 11.2 0.9 0.1 0.1 0.1 0.1 0.3
enigma 37.1 34.3 24.8 18.5 19.1 18.5 19.7
10teams 43.2 10.8 6.6 7.6 9.4 9.7 28.6

Table A.10: Arithmetic mean of relative dual density of cuts with arbitrary rank in %.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 101.0 623.0 11.0 554.0 301.0 702.0 437.0
lseu 68.0 177.0 8.0 168.0 152.0 183.0 64.0
pk1 111.0 117.0 33.0 128.0 127.0 115.0 120.0
aflow40b 483.0 844.0 38.0 841.0 710.0 731.0 509.0
aflow30a 344.0 680.0 31.0 688.0 621.0 589.0 373.0
bell3a 13.0 17.0 12.0 15.0 15.0 15.0 15.0
rgn 167.0 163.0 34.0 169.0 170.0 169.0 148.0
gesa3 o 690.0 994.0 994.0 1,000.0 995.0 997.0 844.0
p2756 207.0 310.0 100.0 276.0 278.0 284.0 212.0
glass4 436.0 631.0 145.0 414.0 632.0 485.0 423.0
stein27 137.0 145.0 101.0 144.0 137.0 144.0 136.0
misc07 169.0 372.0 16.0 419.0 439.0 429.0 161.0
tr12-30 437.0 993.0 500.0 983.0 917.0 900.0 415.0
gesa2 o 409.0 714.0 134.0 661.0 642.0 692.0 535.0
khb05250 97.0 109.0 111.0 96.0 107.0 110.0 95.0
p0033 36.0 77.0 49.0 85.0 82.0 73.0 48.0
misc03 128.0 543.0 12.0 442.0 434.0 425.0 245.0
egout 25.0 42.0 19.0 44.0 37.0 52.0 34.0
mas74 148.0 199.0 54.0 157.0 153.0 157.0 53.0
mitre 84.0 96.0 16.0 88.0 90.0 90.0 83.0
momentum1 96.0 98.0 100.0 1,000.0 98.0 1,000.0 557.0
gen 46.0 45.0 28.0 53.0 35.0 35.0 34.0
liu 502.0 600.0 500.0 596.0 584.0 598.0 472.0
fixnet6 147.0 325.0 113.0 305.0 236.0 255.0 155.0
gesa2 338.0 483.0 119.0 706.0 545.0 543.0 442.0
air03 35.0 35.0 6.0 4.0 1.0 21.0 35.0
fiber 355.0 640.0 46.0 635.0 594.0 632.0 495.0
p0201 520.0 637.0 22.0 680.0 651.0 647.0 582.0
mas76 142.0 171.0 11.0 147.0 148.0 148.0 126.0
modglob 307.0 475.0 30.0 430.0 401.0 329.0 352.0
vpm1 40.0 113.0 15.0 97.0 92.0 95.0 57.0
timtab2 695.0 1,000.0 100.0 999.0 992.0 992.0 773.0
pp08aCUTS 326.0 388.0 203.0 366.0 349.0 300.0 354.0
gesa3 620.0 974.0 80.0 980.0 980.0 978.0 740.0
markshare2 46.0 66.0 66.0 53.0 55.0 55.0 51.0
gesa2-o 401.0 732.0 73.0 754.0 566.0 690.0 531.0
dcmulti 497.0 511.0 97.0 479.0 434.0 443.0 528.0
rd-rplusc-21 73.0 332.0 17.0 393.0 20.0 409.0 431.0

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 449.0 685.0 29.0 530.0 45.0 551.0 538.0
manna81 200.0 100.0 200.0 200.0 200.0 200.0 200.0
opt1217 158.0 249.0 65.0 235.0 234.0 224.0 190.0
flugpl 50.0 50.0 65.0 51.0 68.0 51.0 49.0
p0548 267.0 385.0 238.0 412.0 378.0 407.0 259.0
l152lav 397.0 670.0 36.0 812.0 772.0 810.0 727.0
mkc 705.0 975.0 175.0 975.0 960.0 972.0 762.0
protfold 77.0 1,000.0 9.0 1,000.0 92.0 1,000.0 1,000.0
roll3000 689.0 1,000.0 96.0 992.0 969.0 995.0 967.0
arki001 315.0 431.0 61.0 372.0 446.0 424.0 344.0
misc06 63.0 69.0 9.0 64.0 73.0 76.0 66.0
nsrand-ipx 716.0 68.0 63.0 909.0 65.0 68.0 773.0
a1c1s1 100.0 1,000.0 98.0 984.0 982.0 992.0 869.0
stein45 228.0 244.0 35.0 242.0 241.0 235.0 228.0
rout 240.0 573.0 35.0 490.0 500.0 531.0 252.0
pp08a 275.0 421.0 387.0 409.0 358.0 294.0 325.0
blend2 64.0 271.0 63.0 165.0 134.0 179.0 142.0
bell5 50.0 99.0 15.0 88.0 98.0 97.0 75.0
qiu 471.0 471.0 135.0 467.0 455.0 437.0 78.0
set1ch 374.0 739.0 100.0 722.0 667.0 609.0 349.0
mod011 16.0 16.0 38.0 467.0 460.0 16.0 468.0
mod010 285.0 510.0 29.0 509.0 500.0 500.0 574.0
cap6000 12.0 30.0 2.0 2.0 2.0 2.0 2.0
p0282 160.0 315.0 23.0 339.0 340.0 342.0 173.0
noswot 127.0 145.0 68.0 119.0 158.0 144.0 126.0
harp2 251.0 392.0 168.0 564.0 622.0 766.0 322.0
qnet1 339.0 854.0 121.0 750.0 702.0 862.0 532.0
seymour 1,000.0 1,000.0 100.0 1,000.0 1,000.0 1,000.0 1,000.0
vpm2 148.0 330.0 21.0 277.0 265.0 245.0 231.0
timtab1 693.0 1,000.0 100.0 996.0 1,000.0 989.0 736.0
net12 1,000.0 993.0 23.0 1,000.0 98.0 922.0 1,000.0
gt2 45.0 246.0 15.0 239.0 238.0 237.0 81.0
mod008 72.0 95.0 95.0 95.0 95.0 94.0 74.0
markshare1 50.0 45.0 45.0 44.0 44.0 44.0 47.0
danoint 532.0 249.0 40.0 527.0 517.0 520.0 529.0
momentum2 99.0 100.0 83.0 1,000.0 69.0 1,000.0 75.0
enigma 82.0 75.0 51.0 105.0 94.0 91.0 90.0
10teams 700.0 700.0 56.0 900.0 700.0 900.0 700.0

Table A.11: Number of generated cuts with rank 1.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 732.0 664.0 11.0 601.0 734.0 608.0 730.0
lseu 183.0 173.0 8.0 196.0 171.0 181.0 185.0
pk1 114.0 112.0 30.0 113.0 115.0 117.0 111.0
aflow40b 348.0 842.0 38.0 857.0 598.0 860.0 844.0
aflow30a 667.0 717.0 31.0 697.0 691.0 712.0 658.0
bell3a 25.0 19.0 22.0 15.0 16.0 15.0 17.0
rgn 167.0 163.0 34.0 165.0 167.0 166.0 158.0
gesa3 o 971.0 994.0 192.0 965.0 1,000.0 924.0 937.0
p2756 291.0 258.0 100.0 281.0 282.0 284.0 281.0
glass4 471.0 523.0 92.0 446.0 206.0 597.0 497.0
stein27 158.0 144.0 47.0 144.0 140.0 144.0 136.0
misc07 150.0 364.0 16.0 436.0 381.0 512.0 148.0
tr12-30 877.0 987.0 684.0 1,000.0 1,000.0 1,000.0 998.0
gesa2 o 612.0 765.0 417.0 762.0 778.0 739.0 713.0
khb05250 101.0 109.0 61.0 102.0 105.0 100.0 105.0
p0033 93.0 99.0 19.0 75.0 61.0 76.0 92.0
misc03 187.0 497.0 12.0 433.0 365.0 452.0 203.0
egout 40.0 47.0 18.0 40.0 42.0 79.0 60.0
mas74 143.0 188.0 93.0 154.0 152.0 154.0 53.0
mitre 120.0 74.0 16.0 52.0 70.0 70.0 100.0
momentum1 93.0 89.0 100.0 1,000.0 100.0 1,000.0 403.0
gen 46.0 45.0 13.0 53.0 35.0 35.0 33.0
liu 600.0 600.0 200.0 600.0 600.0 600.0 600.0
fixnet6 280.0 316.0 30.0 359.0 302.0 276.0 359.0
gesa2 588.0 523.0 484.0 624.0 721.0 677.0 690.0
air03 35.0 35.0 4.0 15.0 3.0 20.0 35.0
fiber 652.0 564.0 46.0 611.0 635.0 638.0 618.0
p0201 547.0 642.0 22.0 624.0 641.0 638.0 557.0
mas76 128.0 170.0 11.0 150.0 149.0 149.0 150.0
modglob 382.0 515.0 30.0 471.0 464.0 469.0 438.0
vpm1 66.0 98.0 15.0 74.0 109.0 113.0 70.0
timtab2 1,000.0 1,000.0 100.0 1,000.0 1,000.0 1,000.0 1,000.0
pp08aCUTS 371.0 416.0 342.0 413.0 378.0 368.0 373.0
gesa3 699.0 916.0 80.0 980.0 980.0 980.0 872.0
markshare2 53.0 55.0 55.0 53.0 53.0 55.0 53.0
gesa2-o 635.0 773.0 73.0 743.0 821.0 805.0 876.0
dcmulti 519.0 530.0 91.0 460.0 428.0 481.0 550.0
rd-rplusc-21 197.0 288.0 18.0 627.0 20.0 430.0 471.0

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 453.0 565.0 32.0 520.0 422.0 592.0 543.0
manna81 200.0 100.0 200.0 200.0 200.0 200.0 100.0
opt1217 242.0 259.0 63.0 248.0 248.0 248.0 193.0
flugpl 92.0 105.0 86.0 104.0 95.0 100.0 95.0
p0548 384.0 445.0 196.0 411.0 407.0 420.0 391.0
l152lav 580.0 698.0 36.0 743.0 116.0 793.0 671.0
mkc 975.0 975.0 170.0 975.0 975.0 975.0 975.0
protfold 85.0 1,000.0 1.0 1,000.0 98.0 1,000.0 995.0
roll3000 699.0 1,000.0 94.0 1,000.0 1,000.0 1,000.0 1,000.0
arki001 130.0 400.0 61.0 382.0 371.0 388.0 378.0
misc06 63.0 84.0 9.0 71.0 58.0 71.0 85.0
nsrand-ipx 856.0 68.0 49.0 941.0 68.0 68.0 911.0
a1c1s1 100.0 993.0 98.0 1,000.0 997.0 1,000.0 962.0
stein45 225.0 243.0 35.0 238.0 238.0 236.0 224.0
rout 332.0 561.0 35.0 543.0 577.0 500.0 316.0
pp08a 369.0 426.0 95.0 401.0 430.0 417.0 411.0
blend2 221.0 276.0 23.0 222.0 269.0 281.0 216.0
bell5 130.0 154.0 15.0 126.0 120.0 135.0 130.0
qiu 471.0 471.0 126.0 431.0 418.0 440.0 78.0
set1ch 559.0 678.0 100.0 647.0 674.0 642.0 728.0
mod011 16.0 16.0 35.0 473.0 454.0 16.0 311.0
mod010 275.0 346.0 30.0 460.0 440.0 505.0 484.0
cap6000 27.0 33.0 2.0 27.0 2.0 2.0 2.0
p0282 320.0 354.0 23.0 336.0 298.0 323.0 304.0
noswot 146.0 162.0 91.0 124.0 151.0 142.0 127.0
harp2 139.0 701.0 30.0 736.0 745.0 787.0 342.0
qnet1 710.0 852.0 117.0 885.0 803.0 811.0 854.0
seymour 1,000.0 1,000.0 99.0 1,000.0 849.0 1,000.0 1,000.0
vpm2 312.0 315.0 21.0 305.0 307.0 307.0 302.0
timtab1 1,000.0 1,000.0 100.0 1,000.0 1,000.0 1,000.0 1,000.0
net12 156.0 564.0 39.0 1,000.0 99.0 100.0 261.0
gt2 242.0 252.0 15.0 156.0 168.0 262.0 243.0
mod008 95.0 101.0 64.0 95.0 95.0 95.0 104.0
markshare1 54.0 45.0 45.0 44.0 44.0 44.0 45.0
danoint 531.0 247.0 40.0 517.0 512.0 515.0 531.0
momentum2 100.0 99.0 91.0 1,000.0 97.0 1,000.0 86.0
enigma 80.0 66.0 8.0 96.0 95.0 97.0 112.0
10teams 700.0 700.0 60.0 800.0 544.0 900.0 700.0

Table A.12: Number of generated cuts with arbitrary rank.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 6.4 0.0 21.9 2.2 4.7 4.3 1.6
lseu 0.1 4.5 4.6 0.1 0.4 0.1 0.4
pk1 0.0 27.1 6.4 0.5 0.4 0.4 7.4
aflow40b 11.6 15.9 1.6 0.0 0.3 2.0 14.7
aflow30a 7.7 5.9 105.4 0.6 0.3 0.6 5.2
bell3a 14.5 4.9 2.4 0.9 1.1 0.3 1.1
rgn 6.7 7.4 17.6 0.3 0.4 0.2 5.2
gesa3 o 0.7 5.2 8.1 0.0 0.0 0.9 3.6
p2756 4.4 1.5 0.1 0.1 1.2 0.7 0.7
glass4 0.1 0.0 0.5 0.1 0.2 0.2 0.1
stein27 0.0 0.0 0.0 0.0 0.0 0.0 0.0
misc07 2.9 42.2 40.7 1.3 1.8 1.4 9.8
tr12-30 45.9 1.2 6.0 0.2 0.5 0.1 0.5
gesa2 o 0.3 1.6 2.7 0.1 0.1 0.2 2.6
khb05250 5.3 0.1 6.9 0.0 0.3 0.0 0.6
p0033 0.1 3.0 0.7 0.0 0.0 0.1 0.2
misc03 1.1 10.9 25.8 1.2 1.3 1.2 10.1
egout 0.4 0.3 0.5 0.6 0.0 0.1 0.6
mas74 0.8 11.5 6.1 1.5 0.4 0.0 13.0
mitre 13.7 14.9 1.1 0.0 0.1 0.1 0.2
momentum1 27.4 922.9 0.3 2.6 0.0 1.4 69.2
gen 1.6 8.6 0.1 0.3 0.1 0.0 0.2
liu 0.3 0.2 0.2 0.0 0.0 0.0 0.0
fixnet6 3.4 0.8 23.9 0.0 0.1 0.2 4.9
gesa2 1.3 3.5 0.8 0.3 0.3 0.0 0.6
air03 1.1 333.7 3.8 29.5 591.0 162.9 633.5
fiber 6.1 1.6 13.3 1.1 2.0 0.6 1.1
p0201 0.6 50.3 24.0 0.2 0.8 0.2 5.3
mas76 0.8 9.3 3.7 5.7 2.5 0.3 11.7
modglob 2.3 0.4 16.7 0.0 0.0 0.0 0.4
vpm1 2.3 2.2 0.3 0.3 0.1 0.4 0.1
timtab2 2.5 0.3 2.0 0.6 0.0 0.0 0.5
pp08aCUTS 4.8 1.3 0.7 0.0 0.4 0.0 2.6
gesa3 2.4 9.6 1.4 0.0 0.0 1.3 2.0
markshare2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gesa2-o 0.4 1.8 1.8 0.1 0.1 0.0 2.0
dcmulti 7.2 81.9 4.3 2.6 0.0 0.0 5.5
rd-rplusc-21 4.4 11.1 0.1 0.1 0.0 0.0 1.3

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 2.0 189.8 2.6 1.1 0.5 1.4 49.1
manna81 0.0 0.0 0.0 0.0 0.0 0.0 0.0
opt1217 0.3 87.9 5.6 3.8 0.0 1.3 0.5
flugpl 0.0 0.8 2.1 1.9 0.9 0.0 0.0
p0548 0.4 1.3 17.7 0.3 0.2 0.1 0.3
l152lav 0.6 561.7 2.2 30.6 32.3 24.9 177.5
mkc 2.7 957.2 178.0 0.1 0.0 0.8 176.0
protfold 2.0 407.2 78.4 2.5 62.8 1.3 173.2
roll3000 21.4 304.1 4.5 0.7 1.2 0.7 14.1
arki001 6.5 52.8 41.2 1.0 0.0 1.0 9.9
misc06 34.0 13.4 7.3 1.4 3.0 2.8 6.5
nsrand-ipx 0.0 12.3 1.7 2.6 0.2 0.2 0.4
a1c1s1 64.7 0.9 0.0 0.0 0.0 0.1 1.0
stein45 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rout 10.8 54.1 30.4 0.7 1.6 1.4 27.8
pp08a 4.9 0.0 1.5 0.0 0.1 0.0 0.5
blend2 1.8 21.0 1.2 1.0 2.5 9.1 2.0
bell5 0.8 0.1 0.0 0.3 0.0 0.1 0.4
qiu 33.5 22.9 22.0 0.0 0.1 0.1 21.7
set1ch 12.5 0.4 0.2 0.0 0.5 0.0 0.4
mod011 11.4 33.3 0.0 0.0 0.0 0.0 3.2
mod010 1.2 361.5 1.4 3.8 11.2 10.4 245.6
cap6000 17.5 22.0 0.0 0.0 0.0 0.0 43.0
p0282 0.1 0.4 1.5 0.1 0.1 0.0 0.1
noswot 0.2 1.0 0.6 0.2 0.3 0.2 0.4
harp2 7.2 18.6 13.7 4.8 2.7 3.1 1.2
qnet1 30.3 11.4 41.5 1.9 6.6 2.6 8.8
seymour 0.0 0.0 0.0 0.0 0.0 0.0 0.0
vpm2 2.1 1.9 0.1 1.5 0.1 0.5 0.1
timtab1 1.8 0.1 2.2 0.4 0.0 0.0 0.3
net12 22.7 0.5 0.2 0.2 0.3 0.2 4.6
gt2 0.0 0.6 2.5 7.4 0.0 0.0 0.3
mod008 0.0 21.9 0.0 0.0 0.0 0.0 0.0
markshare1 0.0 0.0 0.6 0.0 0.0 0.0 0.0
danoint 3.1 209.1 72.6 0.6 1.1 0.8 81.1
momentum2 16.3 79.8 0.8 0.3 0.2 0.2 7.8
enigma 0.9 24.0 12.1 0.3 0.3 0.4 1.5
10teams 0.6 48.6 10.5 3.4 3.9 2.5 91.8

Table A.13: Number of cancellations (arithmetic mean) for cuts with rank 1.
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Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

qnet1 o 8.7 38.5 21.9 0.5 0.6 0.4 69.2
lseu 0.5 7.9 4.6 0.1 0.2 0.2 1.2
pk1 0.0 28.8 3.0 0.2 0.2 0.3 6.2
aflow40b 7.9 215.9 1.6 0.7 2.4 2.0 107.0
aflow30a 3.0 77.1 105.4 0.4 1.8 1.5 109.2
bell3a 3.3 7.8 0.3 0.0 0.0 0.0 0.6
rgn 1.4 34.2 10.8 0.2 0.5 0.9 12.1
gesa3 o 6.0 10.3 3.4 0.1 0.1 0.1 34.0
p2756 1.2 4.7 0.1 0.1 0.3 0.2 2.2
glass4 0.4 0.9 0.5 0.1 0.3 0.0 4.1
stein27 0.0 0.0 0.1 0.0 0.0 0.0 0.0
misc07 2.2 19.7 40.7 2.7 2.4 1.6 9.1
tr12-30 55.7 58.0 0.0 0.1 0.3 0.5 40.8
gesa2 o 1.8 8.1 1.2 0.5 0.1 0.1 6.7
khb05250 5.7 3.1 0.4 0.0 0.2 0.1 27.4
p0033 0.2 5.9 1.1 0.1 0.1 0.1 0.4
misc03 1.6 1.5 25.8 0.7 0.9 0.5 7.0
egout 0.2 0.9 0.2 0.0 0.0 0.0 0.4
mas74 2.4 11.9 0.6 0.0 0.0 0.0 13.5
mitre 14.0 15.1 1.1 0.0 0.0 0.0 4.8
momentum1 27.5 861.2 0.3 28.2 0.0 2.1 115.2
gen 1.6 24.9 0.7 0.0 0.0 0.0 0.2
liu 1.2 0.1 0.4 0.1 0.2 0.1 0.3
fixnet6 1.4 24.8 19.4 0.4 0.9 1.0 64.0
gesa2 1.7 9.9 0.9 0.0 1.0 0.0 12.3
air03 1.1 333.7 3.5 26.2 19.3 146.3 633.5
fiber 2.9 16.5 13.3 0.3 0.2 0.1 17.9
p0201 0.9 72.2 24.0 0.2 0.2 0.3 18.3
mas76 1.4 13.7 3.7 0.0 0.0 0.0 13.7
modglob 2.9 2.2 16.7 3.4 2.6 0.2 14.4
vpm1 2.4 4.1 0.3 0.0 0.1 0.0 0.1
timtab2 1.4 1.0 2.0 0.2 1.6 0.2 1.7
pp08aCUTS 1.7 3.4 0.1 0.2 0.3 0.1 10.6
gesa3 2.5 17.0 1.4 0.0 0.1 0.0 12.8
markshare2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gesa2-o 2.0 8.3 1.8 0.0 0.1 0.1 17.0
dcmulti 5.8 109.7 1.9 0.1 0.1 0.2 54.0
rd-rplusc-21 5.9 8.8 0.1 0.6 0.0 0.4 30.2

Instance α∞-NC α1-NC β-NC DNC ENC SNC TNC

swath 2.2 99.6 2.6 2.0 3.5 6.1 80.2
manna81 0.0 0.0 0.0 0.0 0.0 0.0 0.0
opt1217 0.2 396.0 1.2 0.0 0.0 0.0 6.9
flugpl 0.2 0.8 0.1 0.1 0.0 0.0 0.3
p0548 0.2 2.5 8.3 0.0 0.0 0.0 0.5
l152lav 0.6 479.4 2.2 2.0 1,035.4 22.6 73.7
mkc 11.1 995.9 120.7 0.0 0.0 0.0 156.7
protfold 1.8 378.6 17.0 2.1 61.4 1.5 217.8
roll3000 25.4 326.7 4.5 0.2 0.8 0.4 59.1
arki001 10.7 83.0 41.4 2.7 2.8 0.7 47.2
misc06 4.3 5.7 7.3 0.0 0.0 0.0 3.5
nsrand-ipx 0.0 12.3 1.4 0.1 0.2 0.2 2.3
a1c1s1 64.7 10.5 0.0 2.7 32.5 1.7 129.1
stein45 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rout 8.4 154.3 30.4 0.3 1.6 1.1 82.1
pp08a 1.7 2.6 1.3 0.1 0.2 0.1 8.0
blend2 3.2 34.0 12.6 0.3 0.1 0.2 1.6
bell5 0.3 0.5 0.0 0.0 0.0 0.0 0.3
qiu 18.5 43.5 9.5 0.1 0.4 0.1 20.6
set1ch 8.6 1.6 0.2 0.0 0.1 0.1 3.2
mod011 11.4 33.3 0.0 0.0 0.4 0.0 307.5
mod010 0.8 184.6 1.4 4.7 8.1 11.1 232.4
cap6000 20.1 24.4 0.0 0.1 0.0 0.0 43.0
p0282 0.1 1.6 1.5 0.0 0.0 0.0 0.2
noswot 0.0 2.1 0.5 0.1 0.1 0.2 0.3
harp2 8.3 25.8 28.4 0.2 0.1 0.8 43.8
qnet1 6.3 29.2 25.7 0.2 0.7 0.1 103.2
seymour 0.0 0.0 0.0 0.1 0.4 0.0 0.0
vpm2 3.0 10.7 0.1 0.0 0.0 0.1 5.9
timtab1 0.9 0.5 2.2 0.0 0.2 0.1 2.2
net12 25.0 0.6 0.2 0.2 0.3 0.2 18.8
gt2 0.0 5.8 2.5 0.0 0.0 0.0 1.7
mod008 0.0 0.0 0.0 0.0 0.0 0.0 0.0
markshare1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
danoint 1.7 216.1 72.6 0.4 1.7 0.5 67.5
momentum2 16.5 75.4 0.8 0.8 0.2 0.3 5.4
enigma 0.3 29.4 15.0 0.2 0.3 0.4 4.3
10teams 0.8 60.0 10.1 3.4 3.7 2.8 69.5

Table A.14: Number of cancellations (arithmetic mean) for cuts with arbitrary rank.
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