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Multilinear Polytopes

Definition – Multilinear polytope [Del Pia, Khajavirad ’16; Buchheim, Crama, Rodŕıguez-Heck ’16]

Let G = (V ,E) be a hypergraph. The multilinear polytope of G is the polytope

ML(G) := conv
{
(x , y) ∈ {0, 1}V × {0, 1}E : ye =

∏
v∈e

xv for each hyperedge {u, v} ∈ E
}
.

Example:

Remarks:

▶ For binary x ∈ {0, 1}V , the original optimization problem (without auxiliary variables) is called
pseudo-boolean optimization problem. [Hammer, Hansen, Simeone ’84; Boros, Hammer ’91]

▶ For each hyperedge e = {v1, v2, . . . , vk}, we have the logic AND constraint ye = xv1 ∧ xv2 ∧ · · · ∧ xvk .
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Special Case: Boolean Quadric Polytopes

Definition – Boolean quadric polytope [Padberg ’88]

Let G = (V ,E) be a graph. The boolean quadric polytope of G is the polytope

BQP(G) := conv
{
(x , y) ∈ {0, 1}V × {0, 1}E : y{u,v} = xu · xv for each edge {u, v} ∈ E

}
.

Example:

Remarks:

▶ Equivalent to CUT polytope of related graph. [Barahona, Mahjoub ’86; De Simone ’90]

▶ Can be used to minimize a quadratic function q(x) over x ∈ {0, 1}n,
also known as “quadratic unconstrained binary optimization” (QUBO).

▶ Optimization over BQP is NP-hard in general.
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Standard Relaxation

Proposition – Standard relaxation [Fortet ’60; Glover, Woolsey ’74]

Let G = (V ,E) be a hypergraph. The polytope SR(G) defined by

0 ≤ ye ≤ xv ≤ 1 ∀v ∈ e ∈ E (1a)

ye +
∑
v∈e

(1− xv ) ≥ 1 ∀e ∈ E (1b)

yields an IP formulation, i.e., SR(G) ∩ ZV+E = ML(G) ∩ ZV+E .

Theorem – Perfect formulation [Del Pia, Khajavirad ’16;
Buchheim, Crama, Rodŕıguez-Heck ’16]

SR(G) = ML(G) holds if and only if G is Berge-acyclic.

Computational experience:

▶ Bounds obtained from SR(G) are often very weak.
[Luedtke, Namazifar, Linderoth ’12;

Bao, Khajavirad, Sahinidis, Tawarmalani ’14]

Berge cycle:

v1, e1, v2, e2, . . . , vk , ek , v1 with:

▶ vi ∈ V are distinct nodes.

▶ ei ∈ E are distinct edges.

▶ vi ∈ ei−1 ∩ ei for each i

Matthias Walter Cutting Planes for Multilinear Optimization ISMP 2024 3 / 14
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Flower Relaxation

Definition – Flower relaxation
[Del Pia, Khajavirad ’18]

The k-flower inequality centered at f with
neighbors e1, e2, . . . , ek is

yf +
k∑

i=1

(1− yei ) +
∑
v∈R

(1− xv ) ≥ 1, (2)

where R := f \
⋃k

i=1 ei contains all nodes of v
that are not in a leaf. We denote by FR(G)
the standard relaxation SR(G), augmented by
all 1-flower and all 2-flower inequalities.

For comparison: yf +
∑
v∈f

(1− xv ) ≥ 1 (1b)

Special case:

▶ 1-flower inequalities were independently introduced as 2-link inequalities. [Crama, Rodŕıguez-Heck ’17]
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Flower vs. Recursive McCormick Relaxations

Extended flower inequalities:

▶ Inequality is valid even if leaves overlap!

yf + (1− ye1) + (1− ye2) + (1− ye3)

+ (1− x5) ≥ 1

Theorem – Flower power [Khajavirad ’23]

The extended flower relaxation is at least as
strong as any recursive McCormick relaxation.

Recursive McCormick formulations:

▶ Add auxiliary variables yI for intermediate sets I .

yI∪J = yI · yJ

Linearization:
yI∪J ≤ yI
yI∪J ≤ yJ
yI∪J ≥ yI +yJ−1
yI∪J ≥ 0

y{1,2,3,4,5,6} = y{4,5,6} · y{1,2,3}
y{1,2,3} = y{1,2} · x3
y{1,2} = x1 · x2

Theorem – McCormick strikes back
[Schutte, Walter ’24]

The extended flower relaxation is equal to the
intersection of all recursive McCormick relaxations.
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Faster Separation of Flower Inequalities

A useful parameter:
▶ By r ∈ N we denote the rank of G , defined as the maximum size of an edge.

Theorem – Separation via Matching [Del Pia, Khajavirad ’18]

For γ-acyclic hypergraphs, the separation problem can be solved in time O(r |E |2(|V |+ |E |)).

Theorem – Easy [Del Pia, Khajavirad, Sahinidis ’20]

For fixed r , separation can be solved in time O(|E |2).

Proof idea:

▶ For each center edge f , enumerate sets of neighbors.

Theorem – New algorithm [Del Pia, Walter ’24+]

For fixed r , the separation problem can be solved in time O(|E |).

Proof idea:

▶ Per overlap set U := e ∩ f , store min{(1− ye) | e ⊇ U}.
▶ For each center edge f , enumerate contained overlap sets.

Minimizing edges are the neighbors.

Recap: k-flower inequality:

yf +
k∑

i=1

+
∑
v∈R

(1− xv ) ≥ 1
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Odd β-Cycle Inequalities

Definition – Odd β-cycle inequalities [Del Pia, Di Gregorio ’19]

Definition – Odd β-cycle inequalities [Del Pia, Di Gregorio ’19]

Let G = (V ,E) be a hypergraph. If there is a β-cycle C with a certain edge bipartition and some extra
definitions satisfying some extra properties, then

⟨some inequality with complicated coefficients and complicated right-hand side⟩

is called odd β-cycle inequality and valid for ML(G).

Theorem – CG rank [Del Pia, Di Gregorio ’19]

Odd β-cycle inequalities have Chvátal rank 2 (w.r.t. SR).

Theorem – Perfection [Del Pia, Di Gregorio ’19]

For cyclic hypergraphs G , ML(G) is completely de-
scribed by FR(G) plus odd β-cycle inequalities.

Theorem – Separation [Del Pia, Di Gregorio ’19]

For cyclic hypergraphs, separation of odd β-cycle in-
equalities can be done in polynomial time.

Cyclic hypergraph:
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Simple / Relaxed Odd β-Cycle Inequalities

Definitions – Simple / Relaxed Odd β-cycle inequalities [Del Pia, Walter ’22/24+]

Also skipped in this talk!

Remark:

▶ Both new definitions yields weaker inequalities in general!

Theorem – CG rank [Del Pia, Walter ’22/24+]

Simple / relaxed odd β-cycle inequalities have Chvátal rank
2 (with respect to the standard relaxation SR).

Theorem – Perfection [Del Pia, Walter ’22/24+]

For cyclic hypergraphs G , ML(G) is completely described
by FR(G) plus simple / relaxed odd β-cycle inequalities.

Theorem – Separation [Del Pia, Walter ’22/24+]

For arbitrary hypergraphs, separation of simple / relaxed
odd β-cycle inequalities can done in polynomial time.

Cyclic hypergraph:
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Simple vs. Relaxed Odd β-Cycle Inequalities

Common idea:

▶ Patch together 2-flower, 1-flower and standard inequalities in cyclic fashion.

▶ Some coefficients in overlap cancel out, some add up.

▶ Scale by 1/2 and round up the resulting inequality à la Chvátal.

Separation algorithm for simple:

▶ Need to consider all edge pairs as nodes in auxiliary graph and run minimum-weight odd cycle algorithm.

▶ Running time: O(|E |5 + |V |2|E |)

Separation algorithm for relaxed:

▶ Need to consider overlap sets as nodes in auxiliary digraph and run minimum-weight odd cycle algorithm.

▶ Running time for fixed rank: O(|E |2 log |E |)
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Computational Results – Implementation

Implementation:

▶ SCIP plugin sepa multilinear, inspecting all AND constraints:

▶ 1- and 2-flowers will be in SCIP 10.

▶ Simple/relaxed odd β-cycles are not mature, yet.

Experiments:

▶ Time limit: 3600 s

▶ Default settings of SCIP, i.e., including other cutting planes, heuristics, presolve, etc..

First insights:

▶ Fast 1- and 2-flower separation is orders of magnitude faster, so results for slow are skipped.

▶ Number of overlaps typically lies in ballpark of |E |.
▶ Odd β-cycles are turned off if auxiliary (di)graph is too large.
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Low Autocorrelated Binary Sequences

Problem: [used by Del Pia, Di Gregorio ’21]

min
x∈{−1,1}N

N−R+1∑
i=1

R−1∑
d=1

(
i+R−1−d∑

j=i

xjxj+d

)2

⇝nonnegative degree-4 polynomial

Parameters:

▶ N ∈ {10, 15, 20, . . . , 50} and R ∈
{⌈

k
8
N
⌉
: k = 1, 2, . . . , 8

}
(9 · 8 = 72 instances)

#solved Closed gap Running time Sepa time B&B nodes
mean geo.mean s.geo.mean s.geo.mean

Old default (no k-flowers) 28 75% 503.58 s – 2026.39
1-flowers, no 2-flowers 30 90% 410.96 s 2.15 s 640.28
New default (1- and 2-flowers) 29 89% 419.40 s 3.15 s 651.42
Simple oβc’s 26 84% [6 fails] 25.71 s [6 fails]
Simple oβc’s, delayed 27 88% 550.20 s 116.67 s 269.37
Simple oβc’s, delayed, only root 27 89% 501.38 s 60.79 s 398.44
Rlxd oβc’s 29 85% 467.81 s 145.70 s 262.78
Rlxd oβc’s, delayed 29 89% 428.86 s 52.67 s 576.51
Rlxd oβc’s, delayed, only root 30 89% 417.87 s 14.61 s 619.18
Both oβc’s, delayed 26 87% 573.21 s 268.15 s 157.41
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Unconstrained Random High-Degree

Problem: [used by Crama, Rodŕıguez-Heck ’17]

N binaries, M monomials, degree d ∈ {m,m + 1,m + 2, . . . } with probability ≈ 2m−d−1, coefs in U{−10, 10}

Parameters:

▶ 5 instances per N ∈ {50, 100, 200}, M ∈ {5N, 10N, 20N} and m ∈ {2, 3, 4} (5 · 3 · 3 · 3 = 135 instances)

#solved Closed gap Running time Sepa time B&B nodes
mean geo.mean s.geo.mean s.geo.mean

Old default (no k-flowers) 53 0.66% 1041.98 s – 4411.10
1-flowers, no 2-flowers 52 71% 1011.22 s 0.59 s 2375.78
New default (1- and 2-flowers) 52 72% 1027.10 s 1.76 s 1927.02
Simple oβc’s 53 77% 1206.02 s 369.70 s 145.70
Simple oβc’s, delayed 54 78% 1002.96 s 145.11 s 475.23
Simple oβc’s, delayed, only root 52 78% 982.39 s 96.42 s 435.67
Rlxd oβc’s 50 70% 1454.68 s 558.20 s 343.25
Rlxd oβc’s, delayed 51 71% 1220.32 s 190.24 s 1399.01
Rlxd oβc’s, delayed, only root 51 72% 1127.21 s 42.69 s 1629.70
Both oβc’s, delayed 54 78% 1067.71 s 240.03 s 401.20
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Image Restoration

Problem: [used by Crama, Rodŕıguez-Heck ’17]

Image restoration on w -by-h black/white image of which p pixels were perturbed; penalty per 2-by-2 patch

Parameters:

▶ 2 instances per (w , h) ∈ {(10, 10), (10, 15), (15, 15), (15, 20), (20, 20), (20, 25), (25, 25),
p ∈ {0, 5%, 50%}, three motifs (105 distinct instances)

#solved Closed gap Running time Sepa time B&B nodes
mean geo.mean s.geo.mean s.geo.mean

Old default (no k-flowers) 37 77% 1596.01 s – 1393.43
1-flowers, no 2-flowers 105 100% 91.55 s 0.06 s 50.40
New default (1- and 2-flowers) 99 99% 183.94 s 0.11 s 158.41
Simple oβc’s ? ? ? ?
Simple oβc’s, delayed 101 99% 74.58 s 7.56 s 5.96
Simple oβc’s, delayed, only root ? ? ? ?
Rlxd oβc’s 78 92% 328.84 s 133.20 s 150.36
Rlxd oβc’s, delayed 97 99% 220.01 s 19.30 s 148.93
Rlxd oβc’s, delayed, only root 97 99% 217.95 s 14.07 s 149.93
Both oβc’s, delayed ? ? ? ?
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Conclusions

Insights:

▶ Flower inequalities are now really cheap and effective.

▶ Separation problem for relaxed odd β-cycle inequalities is faster than for simple, but only in theory.

Future work:

▶ Strengthen cuts that act on one edge and its neighbors further!

▶ Speed up odd β-cycle cut generation (incl. underlying minium odd cycle search)!

▶ Strengthen odd β-cycle cuts (lift coefficients of nodes)!

▶ Integrate into SCIP (if it pays off)?!

Thank you! – Questions?
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