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Multilinear Polytopes

Definition — Multilinear polytope [Del Pia, Khajavirad '16; Buchheim, Crama, Rodriguez-Heck '16]
Let G = (V, E) be a hypergraph. The multilinear polytope of G is the polytope

ML(G) := conv {(x,y) € {0,1}" x {0,1}F : ye = HXV for each hyperedge {u, v} € E}.

vEe

Example:

>/§4(1'3 = a 2

yiv_(:s,cr}
Y sy

1
Y
v
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Multilinear Polytopes

Definition — Multilinear polytope [Del Pia, Khajavirad '16; Buchheim, Crama, Rodriguez-Heck '16]
Let G = (V, E) be a hypergraph. The multilinear polytope of G is the polytope

ML(G) := conv {(x,y) € {0,1}" x {0,1}F : ye = HXV for each hyperedge {u, v} € E}.

vEe
Example:
>/§4'1'3 - X4 ‘ X‘L
S XX X
731, 3,4 * N Yy
- X
Yigsy =T« s
Remarks:
> For binary x € {0,1}", the original optimization problem (without auxiliary variables) is called
pseudo-boolean optimization problem. [Hammer, Hansen, Simeone '84; Boros, Hammer '91]
» For each hyperedge e = {vi, v2, ..., vk}, we have the logic AND constraint ye = xi; A Xy, A=+ A X, -

Matthias Walter Cutting Planes for Multilinear Optimization



Multilinear Opt Multilinear Polytope Flowers Cycles Computations Final
[ Je] [e]e]e} [e]e]e)] 0000 [e]

Special Case: Boolean Quadric Polytopes

Definition — Boolean quadric polytope [Padberg ’88]

Let G = (V, E) be a graph. The boolean quadric polytope of G is the polytope

BQP(G) = conv {(x,y) € {0,1}" x {0,1}" : y{u.} = xu - X, for each edge {u,v} € E}.

Example:

;I Vi3 T Xyt X3 V53,517 X3+ Xs

b = X, X
/ - RV y{«,cs 75
/{z,qﬂ 2 ¢ X € $0,17 iz

Matthias Walter Cutting Planes for Multilinear Optimization
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Special Case: Boolean Quadric Polytopes

[Padberg '88]

Definition — Boolean quadric polytope
Let G = (V, E) be a graph. The boolean quadric polytope of G is the polytope

BQP(G) = conv {(x,y) € {0,1}" x {0,1}" : y{u.} = xu - X, for each edge {u,v} € E}.

Example:

;I Vi3 T Xyt X3 V53,517 X3+ Xs

b = X, X
/ - RV >/§=«,<;S 75
/{z,qﬂ 2 ¢ X € $0,17 iz

Remarks:
» Equivalent to CUT polytope of related graph.
» Can be used to minimize a quadratic function g(x) over x € {0,1}",
also known as “quadratic unconstrained binary optimization” (QUBO).

» Optimization over BQP is NP-hard in general.

[Barahona, Mahjoub '86; De Simone '90]

Cutting Planes for Multilinear Optimization
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Standard Relaxation

Proposition — Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by
0<y.<x, <1 VveeecE (1a)
Ye+ D (1-x)>1 Ve e E (1b)

vee

yields an IP formulation, i.e., SR(G) N ZY"E = ML(G) N ZYE.

Matthias Walter Cutting Planes for Multilinear Optimization
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Proposition — Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by
0<y.<x, <1 VveeecE (1a)
Ye+ D (1-x)>1 Ve e E (1b)

vee

yields an IP formulation, i.e., SR(G) N ZY"E = ML(G) N ZYE.

Berge cycle:

Vi, €1, V2, €, ..., Vk, €, Vi With:
» v; € V are distinct nodes.
» ¢ € E are distinct edges.

» v, € ei_1 Ne; for each i

Matthias Walter Cutting Planes for Multilinear Optimization
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Proposition — Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by
0<y.<x, <1 VveeecE (1a)

Ye+ D (1-x)>1 Ve e E (1b)
vee

yields an IP formulation, i.e., SR(G) N ZY"E = ML(G) N Z"*E.

Theorem — Perfect formulation [Del Pia, Khajavirad '16;

Buchheim, Crama, Rodriguez-Heck '16]
SR(G) = ML(G) holds if and only if G is Berge-acyclic.

Berge cycle:

Vi, €1, V2, €, ..., Vk, €, Vi With:
» v; € V are distinct nodes.
» e; € E are distinct edges.

» v, € e_1Ne foreach i

Cutting Planes for Multilinear Optimization
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Proposition — Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by
0<y.<x, <1 VveeecE (1a)
Ye+ D (1-x)>1 Ve e E (1b)

vee

yields an IP formulation, i.e., SR(G) N ZY"E = ML(G) N ZYE.

Theorem — Perfect formulation [Del Pia, Khajavirad '16;

Buchheim, Crama, Rodriguez-Heck '16]

SR(G) = ML(G) holds if and only if G is Berge-acyclic.

Computational experience:

» Bounds obtained from SR(G) are often very weak.
[Luedtke, Namazifar, Linderoth '12;
Bao, Khajavirad, Sahinidis, Tawarmalani '14]

Berge cycle:

Vi, €1, V2, €, ..., Vk, €, Vi With:
» v; € V are distinct nodes.
» e; € E are distinct edges.

» v, € e_1Ne foreach i

Cutting Planes for Multilinear Optimization
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Flower Relaxation

Definition — Flower relaxation

[Del Pia, Khajavirad '18]

The k-flower inequality centered at f with
neighbors e, e, ... e is

yf+z 1-y)+ Y (1-x)>1, (2

VER

where R := f \ |J¥_, e contains all nodes of v
that are not in a leaf. We denote by FR(G)
the standard relaxation SR(G), augmented by
all 1-flower and all 2-flower inequalities.

instad o{
fh-x)+Hn- Xz) +(1-%%)

For comparison: yr + > (1 —x,) >1 (1b)
vef

Cutting Planes for Multilinear Optimization
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Flower Relaxation

Definition — Flower relaxation

[Del Pia, Khajavirad '18]

The k-flower inequality centered at f with

neighbors e, e, ... e is
yf+z l-ye)+) (1-x)>1, (2)
vVER

where R = f \ Ufle e; contains all nodes of v
that are not in a leaf. We denote by FR(G)
the standard relaxation SR(G), augmented by
all 1-flower and all 2-flower inequalities.

f-x)ela-xa) el

For comparison: yr + > (1 —x,) >1 (1b)
vef

Special case:

> 1-flower inequalities were independently introduced as 2-link inequalities. [Crama, Rodriguez-Heck '17]

Cutting Planes for Multilinear Optimization

Matthias Walter
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Extended flower inequalities:

» Inequality is valid even if leaves overlap!

Vet (1= ye) + (1= ye) + (1~ ye)
+(1-x)>1

Cutting Planes for Multilinear Optimization
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Flower vs. Recursive McCormick Relaxations

(o] le} 000 0000
Extended flower inequalities: Recursive McCormick formulations:
> Inequality is valid even if leaves overlap! » Add auxiliary variables y; for intermediate sets /.

f'I{Z(S,‘(,?,(S 51,2,3(401 Yivs = Y1 yJ

sN o
3 45,61 712,33 Linearization:
< 4 yivs <y
14 <1 \ 21,23 yios <y
<N <) yius > yi+ys—1

L3 g 4 10
1ot 4 yius >0

Y{1,2,3,4,5,6} = Y{4,5,6} * ¥{1,2,3}
et (1= ya) + (1= ye) + (1 - ya) Vi) = Vi) s
Y{12y = X1 X2
+(1-x)>1

Matthias Walter Cutting Planes for Multilinear Optimization ISMP 2024
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Flower vs. Recursive McCormick Relaxations

(o] le} 000 0000
Extended flower inequalities: Recursive McCormick formulations:
> Inequality is valid even if leaves overlap! » Add auxiliary variables y; for intermediate sets /.

f'I{Z(S,‘(,?,(; 51,2,3(401 Yivs = Y1 yJ

e N <
3 45,61 712,33 Linearization:
4 4 yivs <y
14 <1 \ 2 yivs <y
<N <) yius > yi+ys—1
3 g E a2 72 4 A0 Vios > 0

Y{1,2,3,4,5,6} = Y{4,5,6} * ¥{1,2,3}
et (1= ya) + (1= ye) + (1 - ya) Vi) = Vi) s
Y{1,2} = X1 X2
+(1-x)>1

Theorem — Flower power  [Khajavirad '23]

The extended flower relaxation is at least as
strong as any recursive McCormick relaxation.

Matthias Walter Cutting Planes for Multilinear Optimization
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Flower vs. Recursive McCormick Relaxations

(o] le} 000 0000
Extended flower inequalities: Recursive McCormick formulations:
> Inequality is valid even if leaves overlap! » Add auxiliary variables y; for intermediate sets /.

{4,2,3,‘(,?,(; 51‘2’3(401 Yivs = Y1 yJ

e N <
3 45,61 712,33 Linearization:
< 4 yius <y
14 <1 \ 21,23 yivs <y
<N <) yius > yi+ys—1
3 g C a 7 ¢ 40 Vios > 0

Y{1,2,3,4,5,6} = Y{4,5,6} * ¥{1,2,3}

= - X
Vet (1= yo) + (L= yo) + (1= o) i
+(1-x)>1 ’
Theorem — McCormick strikes back
Theorem — Flower power  [Khajavirad '23] [Schutte, Walter '24]
The extended flowc.ar relaxatior! is at IeasF as The extended flower relaxation is equal to the
strong as any recursive McCormick relaxation. intersection of all recursive McCormick relaxations.

Matthias Walter Cutting Planes for Multilinear Optimization ISMP 2024
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Faster Separation of Flower Inequalities

A useful parameter:
» By r € N we denote the rank of G, defined as the maximum size of an edge.

Theorem — Separation via Matching [Del Pia, Khajavirad '18]

For y-acyclic hypergraphs, the separation problem can be solved in time O(r|E*(|V| + |E|)).

Cutting Planes for Multilinear Optimization ISMP 2024 6/ 14
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Faster Separation of Flower Inequalities

A useful parameter:
» By r € N we denote the rank of G, defined as the maximum size of an edge.

Theorem — Separation via Matching [Del Pia, Khajavirad '18]

For y-acyclic hypergraphs, the separation problem can be solved in time O(r|E*(|V| + |E|)).

Theorem — Easy [Del Pia, Khajavirad, Sahinidis '20]

For fixed r, separation can be solved in time O(|E|?).

Cutting Planes for Multilinear Optimization ISMP 2024 6/ 14
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Faster Separation of Flower Inequalities

A useful parameter:
» By r € N we denote the rank of G, defined as the maximum size of an edge.

Theorem — Separation via Matching [Del Pia, Khajavirad '18]

For y-acyclic hypergraphs, the separation problem can be solved in time O(r|E*(|V| + |E|)).

Theorem — Easy [Del Pia, Khajavirad, Sahinidis '20] Recap: k-flower inequality:

For fixed r, separation can be solved in time O(|E|?).

K
S (1 —ye) + (1 -x) > 1
Proof idea: i=1 veR

» For each center edge f, enumerate sets of neighbors.

Matthias Walter Cutting Planes for Multilinear Optimization
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Faster Separation of Flower Inequalities

A useful parameter:
» By r € N we denote the rank of G, defined as the maximum size of an edge.

Theorem — Separation via Matching [Del Pia, Khajavirad '18]

For y-acyclic hypergraphs, the separation problem can be solved in time O(r|E*(|V| + |E|)).

Theorem — Easy [Del Pia, Khajavirad, Sahinidis '20] Recap: k-flower inequality:

For fixed r, separation can be solved in time O(|E|?).

vt (L=ye) +3 (1-x)>1

Proof idea: veRr

» For each center edge f, enumerate sets of neighbors.

Theorem — New algorithm [Del Pia, Walter "24+]

For fixed r, the separation problem can be solved in time O(|E|).

Matthias Walter Cutting Planes for Multilinear Optimization
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A useful parameter:
» By r € N we denote the rank of G, defined as the maximum size of an edge.

Theorem — Separation via Matching [Del Pia, Khajavirad '18]

For y-acyclic hypergraphs, the separation problem can be solved in time O(r|E*(|V| + |E|)).

Theorem — Easy [Del Pia, Khajavirad, Sahinidis '20] Recap: k-flower inequality:

For fixed r, separation can be solved in time O(|E|?).

yit ) (L=ye) +3(1-x)>1

Proof idea: veRr

» For each center edge f, enumerate sets of neighbors.

Theorem — New algorithm [Del Pia, Walter "24+]

For fixed r, the separation problem can be solved in time O(|E|).

Proof idea:

> Per overlap set U :=eN f, store min{(1—y.) | e D U}.

» For each center edge f, enumerate contained overlap sets.
Minimizing edges are the neighbors.

Matthias Walter

Cutting Planes for Multilinear Optimization ISMP 2024



Multilinear Opt ~ Multilinear Polytope ~ Flowers ~ Cycles ~ Computations  Final
[e]e) 000 @00 0000 o]

Odd pB-Cycle Inequalities
Definition — Odd $-cycle inequalities [Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V,E),let C = vy, €1, 0, ..., Uy, €, v1 be a p-cyclein G, and let E-, E* be a
partition of E(C) such thatk := |[E"|is odd and e; € E™. Let D := {ep41, €12, - - ., en}, Where e, is the last edge in C that
belongs to E~. We denote by fi, . . ., f; the subsequence of ey, . . ., e, of the edges in E™. Let S := (Ueeg-€) \ Ueer+ € and
Sy := V(C) \ Ueeg- e. With this notation in place, we make the following assumptions:

(a) Every node v € U/, e; is contained in at most two edges among ey,...,e;.

(b) For every edge ¢; € E* \ D, every edge in E~ adjacent to ¢; (if any) is either e;.1 or ej1.

(c) No edge in D is adjacent to an edge f; with i even.

(d) At least one of the following two conditions holds:

(d1) For every v € Sy, either v is contained in just one edge e € E~, or it is contained in two edges f;, f; with i
odd and j even.

(d2) For every ¢’ € E~ and ¢” € D such that ¢’ Ne” # 0, then either ¢’ = e, ¢” = ¢, or ¢’ =¢p, €’ = epy1.

We then define the odd B-cycle inequality corresponding to C and E~ as

k
Dizo— D ze— D 2o+ > ze SIS - i€ {l,...,m} e, e €ETH 4|5

vES eeE~ VESy eeE*r 2

@)

Matthias Cutting Planes for Multilinear Optimization
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Odd pB-Cycle Inequalities
Definition — Odd $-cycle inequalities [Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V,E), let C = vy, ey, U2, ..., Um, €y, v1 be a f-cyclein G, and let E*, E* be a
partition of E(C) such thatk := |[E7|is odd and e; € E™. Let D := {e,41, €12, . .., €}, Where ¢, is the last edge in C that
belongs to E~. We denote by fi, . . ., fi the subsequence of ey, . . ., e, of the edges in E™. Let Sy := (Ueeg-€) \ Ueep+ € and
Sy := V(C) \ Ueek- e. With this notation in place, we make the following assumptions:

(a) Every node v € U}, ¢; is contained in at most two edges among ey, ..., €.

(b) For every edge e; € E" \ D, every edge in E~ adjacent to e; (if any) is either e,_1 or ej1.

(c) No edge in D is adjacent to an edge f; with i even.

(d) At least one of the following two conditions holds:

(d1) For every v € Sy, either v is contained in just one edge e € E7, or it is contained in two edges f;, f; with i
odd and j even.

(d2) For every ¢’ € E” and ¢” € D such that ¢’ Ne” # 0, then either ¢’ =e1, ¢” =e, or ¢ =¢p, €’ = eps1-

We then define the odd B-cycle inequality corresponding to C and E~ as

DlZe— D Ze— > Zv+ Dz < IS —{i€{l,...,m}:e;, e € ET}H + EJ 2)

vES) e€E~ VES, e€E*

Matthias Cutting Planes for Multilinear Optimization ISMP 2024 7/ 14
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equalities [Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V,E),let C = vy, €1, 02, ..., U, €m, V1 be a f-cyclein G, and let E-, E* be a
partition of E(C) such thatk := |[E"|isodd and e; € E™. Let D := {ep+1,€p+2,- - -, €}, Where ¢, is the last edge in C that
belongs to E~. We denote by fi, . . ., fx the subsequence of ¢4, . . ., ¢, of the edges in E~. Let S; := (Ueeg €) \ Ueep+ e and
Sz := V(C) \ Ueep- e. With this notation in place, we make the following assumptions:

(a) Every node v € U/, e; is contained in at most two edges among e1,...,e,.

(b) For every edge ¢; € E* \ D, every edge in E- adjacent to ¢; (if any) is either ¢,_; or ej1.

(c) No edge in D is adjacent to an edge f; with i even.

(d) At least one of the following two conditions holds:

(d1) For every v € Si, either v is contained in just one edge e € E™, or it is contained in two edges f;, f; with i
odd and j even.

(d2) For every ¢’ € E- and e¢” € D such that ¢’ Ne” # 0, then either ¢ = e

’”

, e’ =ey or e =ep, e = epi.
We then define the odd p-cycle inequality corresponding to C and E~ as
X _ k
Sm-Sm- SE o S lsil o e (L. m) e e < B+ 5] @
€S, ceE~ €S, cekr

Cutting Planes for Multili
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Odd S-cycle inequalities [Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V, E), let C = ©1, €1, 02, - - ., U, €y, 01 be a f-cycle in G, and let E-, E*
partition of E(C) such thatk := |[E~| is odd and ¢, € E~. Let D

belongs to E~. We denote by fi, - . ., fi the subsequence of e, .

be a
the last edge in C that
(Uecr-€) \ Ueeer e and

{epr1,€piz, - .., €}, where e, i
, e, of the edges in E—. Let Sy

Sz := V(C) \ Ueer €. With this notation in place, we make the following assumptions:
(a) Every node v € U/, e; is contained in at most two edges among €1, ..., €.
(b) For every edge ¢, € E* \ D, every edge in E- adjacent to ¢; (if any) is either ¢, 1 or e..1.

(c) No edge in D is adjacent to an edge f; with 7 even.

(d) At least one of the following two conditions holds:

(d1) For every v € Si, either © is contained in just one edge ¢ € E
odd and j even.

(d2) For every ¢ € E~ and e” € D such that ¢ NMe” # 0, then either ¢

, or it is contained in two edges f;, f; with 7

=e1, e =e, or ¢ =e¢ep, e’

pia-
We then define the odd g-cycle inequality corresponding to C and E~ as

em 3 Em - mer Sim = IS -G € (L. m)ienem < EH 4|
> 2= =

(&3]

Aatthia Cutting Planes for Multilinear Optimization
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Odd pB-Cycle Inequalities

Definition — Odd $-cycle inequalities [Del Pia, Di Gregorio '19]

Let G = (V,E) be a hypergraph. If there is a S-cycle C with a certain edge bipartition and some extra
definitions satisfying some extra properties, then

(some inequality with complicated coefficients and complicated right-hand side)

is called odd $-cycle inequality and valid for ML(G).

Cutting Planes for Multilinear Optimization
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Definition — Odd $-cycle inequalities [Del Pia, Di Gregorio '19]

Let G = (V,E) be a hypergraph. If there is a S-cycle C with a certain edge bipartition and some extra
definitions satisfying some extra properties, then

(some inequality with complicated coefficients and complicated right-hand side)

is called odd $-cycle inequality and valid for ML(G).

Theorem — CG rank [Del Pia, Di Gregorio "19]

Odd S-cycle inequalities have Chvétal rank 2 (w.r.t. SR).

Matthias Cutting Planes for Multilinear Optimization
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Odd pB-Cycle Inequalities

Definition — Odd $-cycle inequalities [Del Pia, Di Gregorio '19]

Let G = (V,E) be a hypergraph. If there is a S-cycle C with a certain edge bipartition and some extra
definitions satisfying some extra properties, then

(some inequality with complicated coefficients and complicated right-hand side)

is called odd $-cycle inequality and valid for ML(G).

Theorem — CG rank DR Rl  Cyclic hypergraph:
Odd B-cycle inequalities have Chvatal rank 2 (w.r.t. SR).

Theorem — Perfection [Del Pia, Di Gregorio '19]

For cyclic hypergraphs G, ML(G) is completely de-
scribed by FR(G) plus odd S-cycle inequalities.

Matthias Walter Cutting Planes for Multilinear Optimization
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Odd pB-Cycle Inequalities

Definition — Odd $-cycle inequalities [Del Pia, Di Gregorio '19]

Let G = (V,E) be a hypergraph. If there is a S-cycle C with a certain edge bipartition and some extra
definitions satisfying some extra properties, then

(some inequality with complicated coefficients and complicated right-hand side)

is called odd $-cycle inequality and valid for ML(G).

Theorem — CG rank DR Rl  Cyclic hypergraph:
Odd B-cycle inequalities have Chvatal rank 2 (w.r.t. SR).

Theorem — Perfection [Del Pia, Di Gregorio '19]

For cyclic hypergraphs G, ML(G) is completely de-
scribed by FR(G) plus odd S-cycle inequalities.

.

Theorem — Separation [Del Pia, Di Gregorio '19]

For cyclic hypergraphs, separation of odd [B-cycle in-
equalities can be done in polynomial time.

Cutting Planes for Multilinear Optimization
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Simple / Relaxed Odd 3-Cycle Inequalities

Definitions — Simple / Relaxed Odd f-cycle inequalities [Del Pia, Walter '22/24+]

Also skipped in this talk!

Remark:

» Both new definitions yields weaker inequalities in general!

Theorem — CG rank [Del Pia, Walter '22/24+] Cyclic hypergraph:

Simple / relaxed odd 3-cycle inequalities have Chvatal rank
2 (with respect to the standard relaxation SR).

Theorem — Perfection [Del Pia, Walter ’22/24+]

For cyclic hypergraphs G, ML(G) is completely described
by FR(G) plus simple / relaxed odd S-cycle inequalities.

Theorem — Separation [Del Pia, Walter '22/24+]

For arbitrary hypergraphs, separation of simple / relaxed
odd fB-cycle inequalities can done in polynomial time.

Matthias Walter Cutting Planes for Multilinear Optimization
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Simple vs. Relaxed Odd (3-Cycle Inequalities memea, Opt

Common idea:

» Patch together 2-flower, 1-flower and standard inequalities in cyclic fashion.
» Some coefficients in overlap cancel out, some add up.

» Scale by 1/2 and round up the resulting inequality a la Chvétal.
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Simple vs. Relaxed Odd S-Cycle Inequalities

Common idea:
» Patch together 2-flower, 1-flower and standard inequalities in cyclic fashion.
» Some coefficients in overlap cancel out, some add up.

» Scale by 1/2 and round up the resulting inequality a la Chvétal.

Separation algorithm for simple:
» Need to consider all edge pairs as nodes in auxiliary graph and run minimum-weight odd cycle algorithm.
» Running time: O(|E|* + |V|?|E|)
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Simple vs. Relaxed Odd S-Cycle Inequalities

Common idea:
» Patch together 2-flower, 1-flower and standard inequalities in cyclic fashion.
» Some coefficients in overlap cancel out, some add up.

» Scale by 1/2 and round up the resulting inequality a la Chvétal.

Separation algorithm for simple:
» Need to consider all edge pairs as nodes in auxiliary graph and run minimum-weight odd cycle algorithm.
» Running time: O(|E|* + |V|?|E|)

Separation algorithm for relaxed:
» Need to consider overlap sets as nodes in auxiliary digraph and run minimum-weight odd cycle algorithm.
» Running time for fixed rank: O(|E|* log|E|)

Matthias Walter Cutting Planes for Multilinear Optimization ISMP 2024 9/ 14
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. . Multilinear O
Computational Results — Implementation L e

Implementation:
» SCIP plugin sepamultilinear, inspecting all AND constraints:
» 1- and 2-flowers will be in SCIP 10.

» Simple/relaxed odd S-cycles are not mature, yet.
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Implementation:
» SCIP plugin sepamultilinear, inspecting all AND constraints:
» 1- and 2-flowers will be in SCIP 10.

» Simple/relaxed odd S-cycles are not mature, yet.

Experiments:
» Time limit: 3600s

» Default settings of SCIP, i.e., including other cutting planes, heuristics, presolve, etc..
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Computational Results — Implementation

Implementation:
» SCIP plugin sepamultilinear, inspecting all AND constraints:
» 1- and 2-flowers will be in SCIP 10.

» Simple/relaxed odd S-cycles are not mature, yet.

Experiments:
» Time limit: 3600s

» Default settings of SCIP, i.e., including other cutting planes, heuristics, presolve, etc..

First insights:
» Fast 1- and 2-flower separation is orders of magnitude faster, so results for slow are skipped.
» Number of overlaps typically lies in ballpark of |E|.
» Odd B-cycles are turned off if auxiliary (di)graph is too large.

Matthias Walter Cutting Planes for Multilinear Optimization ISMP 2024
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Low Autocorrelated Binary Sequences
Problem: [used by Del Pia, Di Gregorio '21]

N—R+1R—1 [i+R—1—d
min E E E XjXj4+d «~ nonnegative degree-4 polynomial
xe{—1,1}N

i=1 d=1

Parameters:
» N e {10,15,20,...,50} and R € {[gN] k= 1,2,...,8} (9 - 8 = 72 instances)
#solved Closed gap Running time Sepa time B&B nodes
mean geo.mean s.geo.mean s.geo.mean
Old default (no k-flowers) 28 75 % 503.58's - 2026.39
1-flowers, no 2-flowers 30 90 % 410.96s 2.15s 640.28
New default (1- and 2-flowers) 29 89 % 419.40s 3.15s 651.42
Simple ofc’s 26 84% [6 fails] 25.71s [6 fails]
Simple ofc’s, delayed 27 88 % 550.20s 116.67 s 269.37
Simple ofc’s, delayed, only root 27 89 % 501.38s 60.79s 398.44
Rixd ofc's 29 85 % 467.81s 145.70s 262.78
RiIxd of8c’s, delayed 29 89 % 428.86s 52.67s 576.51
Rixd ofc's, delayed, only root 30 89 % 417.87s 14.61s 619.18
Both ofc's, delayed 26 87 % 573.21s 268.15s 157.41
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[used by Crama, Rodriguez-Heck '17]

N binaries, M monomials, degree d € {m,m+ 1, m+ 2,...} with probability ~ 2m=971 coefs in u{-10,10}

Parameters:

» 5 instances per N € {50, 100,200}, M € {5N,10N,20N} and m € {2,3,4} (5-3-3-3 =135 instances)

#solved Closed gap Running time Sepa time B&B nodes

mean geo.mean s.geo.mean s.geo.mean

Old default (no k-flowers) 53 0.66 % 1041.98s - 4411.10
1-flowers, no 2-flowers 52 71% 1011.22s 0.59s 2375.78
New default (1- and 2-flowers) 52 2% 1027.10s 1.76s 1927.02
Simple ofc’s 53 7% 1206.02s 369.70s 145.70
Simple ofc’s, delayed 54 78 % 1002.96 s 145.11s 475.23
Simple ofc’s, delayed, only root 52 78 % 982.39s 96.42s 435.67
Rixd ofc’s 50 70 % 1454.68's 558.20's 343.25
Rixd ofc's, delayed 51 71% 1220.32s 190.24s 1399.01
Rixd ofc's, delayed, only root 51 2% 1127.21s 42.69s 1629.70
Both ofc's, delayed 54 78 % 1067.71s 240.03s 401.20
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Image Restoration

Problem: [used by Crama, Rodriguez-Heck '17]

Image restoration on w-by-h black/white image of which p pixels were perturbed; penalty per 2-by-2 patch

Parameters:
» 2 instances per (w, h) € {(10, 10), (10, 15), (15, 15), (15, 20), (20, 20), (20, 25), (25, 25),
p €{0,5%,50%}, three motifs (105 distinct instances)
#solved Closed gap Running time Sepa time B&B nodes
mean geo.mean s.geo.mean s.geo.mean
Old default (no k-flowers) 37 7% 1596.01s - 1393.43
1-flowers, no 2-flowers 105 100 % 91.55s 0.06s 50.40
New default (1- and 2-flowers) 99 99 % 183.94s 0.11s 158.41
Simple ofc’s ? ? ? ?
Simple of8c’s, delayed 101 99 % 74.58s 7.56s 5.96
Simple ofc’s, delayed, only root ? ? ? ?
Rixd ofc’s 78 92% 328.84s 133.20s 150.36
Rixd ofc's, delayed 97 99 % 220.01s 19.30s 148.93
Rixd ofc’s, delayed, only root 97 99 % 217.95s 14.07s 149.93
Both ofc's, delayed ? ? ? ?
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Image Restoration

Problem: [used by Crama, Rodriguez-Heck '17]

Image restoration on w-by-h black/white image of which p pixels were perturbed; penalty per 2-by-2 patch

Parameters:
» 2 instances per (w, h) € {(10, 10), (10, 15), (15, 15), (15, 20), (20, 20), (20, 25), (25, 25),
p € {0,5%,50%}, three motifs (105 distinct instances)
#solved Closed gap Running time
mean geo.mean
Old default (no k-flowers) 37 7% 1596.01s
1-flowers, no 2-flowers 105 100 % 91.55s
New default (1- and 2-flowers) 99 99 % 183.94s
Simple ofc’s ? ? ?
Simple ofBc’s, delayed 101 99 % 74.58s
Simple ofc’s, delayed, only root ? ? ?
RiIxd ofc’s 78 92% 328.84s
RiIxd ofc’s, delayed 97 99 % 220.01s
Rixd ofc’s, delayed, only root 97 99 % 217.95s
Both ofc's, delayed ? ? ?
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Conclusions

Insights:
» Flower inequalities are now really cheap and effective.

» Separation problem for relaxed odd S-cycle inequalities is faster than for simple, but only in theory.
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Insights:
» Flower inequalities are now really cheap and effective.

» Separation problem for relaxed odd S-cycle inequalities is faster than for simple, but only in theory.

Future work:
» Strengthen cuts that act on one edge and its neighbors further!
» Speed up odd S-cycle cut generation (incl. underlying minium odd cycle search)!
» Strengthen odd S-cycle cuts (lift coefficients of nodes)!
» Integrate into SCIP (if it pays off)?!
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Insights:
» Flower inequalities are now really cheap and effective.

» Separation problem for relaxed odd S-cycle inequalities is faster than for simple, but only in theory.

Future work:
» Strengthen cuts that act on one edge and its neighbors further!
» Speed up odd S-cycle cut generation (incl. underlying minium odd cycle search)!
» Strengthen odd S-cycle cuts (lift coefficients of nodes)!
» Integrate into SCIP (if it pays off)?!

Thank you! — Questions?
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