Extended Formulations for Radial Cones

Matthias Walter (RWTH Aachen)

Joint work with

Stefan Weltge (TU Munich)

Colloquium on Combinatorics, Paderborn, November 2018

Optimization & Augmentation

Combinatorial optimization problem:

- Ground set E (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^{\mathcal{E}}$
- Objective vector $c \in \mathbb{Q}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
00000	00	000	00

Optimization & Augmentation

Combinatorial optimization problem:

- Ground set *E* (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^{E}$
- Objective vector $c \in \mathbb{Q}^{E}$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

• Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
00000	00	000	00

Optimization & Augmentation

Combinatorial optimization problem:

- Ground set E (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^{E}$
- Objective vector $c \in \mathbb{Q}^{E}$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

• Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

 OPT, AUG & Polyhedra
 T-Joins & *T*-Cuts
 Blocking Polarity
 Results

 ●00000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

 OPT, AUG & Polyhedra
 T-Joins & T-Cuts
 Blocking Polarity
 Results

 000000
 00
 00
 00
 00

Polyhedral method:

▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.

Matthias Walter

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Result
00000	00	000	00

Polyhedral method:

- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$. ▶ Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0,1\}^E$.
- Optimization problem is then to minimize (c, x) over $x \in X$.

OPT. AUG & Polyhedra T-Joins & T-Cuts Blocking Polarity Results 00000

Polyhedral method:

- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$. ▶ Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0,1\}^E$.
- Optimization problem is then to minimize (c, x) over $x \in conv(X)$.

Polyhedral	method:
------------	---------

- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$. ▶ Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0,1\}^E$.
- Optimization problem is then to minimize (c, x) over $x \in conv(X)$.
- Find an outer description of conv(X), i.e., $conv(X) = \{x \in \mathbb{R}^E : Ax \le b\}$.
- Optimization problem is now an LP and we can use black-box solvers.

	RWTH	
and the second	014141	

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

• $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?

Matthias Walter

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*−1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*−1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.

Matthias Walter

One drawback of the polyhedral method:

- Consider $X \coloneqq \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d \text{ polyhedron}, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d \text{ polyhedron}, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

Disjunctive programming:

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

•
$$X = \bigcup_{k \text{ even}} \{x \in \{0, 1\}^n : \sum_{i=1}^n = k\}$$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

$$\bullet \operatorname{conv}(X) = \operatorname{conv}(\bigcup_{k \text{ even}} \{x \in \{0,1\}^n : \sum_{i=1}^n = k\})$$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

 $\succ \operatorname{conv}(X) = \operatorname{conv}(\bigcup_{k \text{ even}} \operatorname{conv}(\{x \in \{0, 1\}^n : \sum_{i=1}^n = k\}))$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- \blacktriangleright Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

► conv(X) = conv(
$$\bigcup_{k \text{ even}} \{x \in [0,1]^n : \sum_{i=1}^n = k\}$$
)

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d$ polyhedron, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\operatorname{xc}(\operatorname{conv}(P_1 \cup \cdots \cup P_k)) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

- ► conv(X) = conv($\bigcup_{k \text{ even}} \{x \in [0,1]^n : \sum_{i=1}^n = k\}$)
- Applying the theorem: $xc(conv(X)) \leq O(n^2)$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Hard problems:

 Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \leq xc(P)$.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $\operatorname{xc}(\pi(P)) \leq \operatorname{xc}(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \le xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $\operatorname{xc}(\pi(P)) \leq \operatorname{xc}(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even $n, xc(P_{pmatch}(n)) \ge 2^{\Omega(n)}$. Here, $P_{pmatch}(n)$ denotes the perfect matching polytope for K_n .

Polyhedral version of the augmentation problem:

- ▶ Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.

k

Polyhedral version of the augmentation problem:

- ▶ Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
- The polyhedron for this task is the radial cone:

$$\begin{aligned} & \mathcal{K}_{\mathcal{P}}(\mathbf{v}) \coloneqq \operatorname{cone}(\mathcal{P} - \mathbf{v}) + \mathbf{v} \\ &= \{ x \in \mathbb{R}^n : A_{i,*} x \le b_i \text{ for all } i \text{ with } A_{*,i} \mathbf{v} = b_i \} \end{aligned}$$

Polyhedral version of the augmentation problem:

- ▶ Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
- The polyhedron for this task is the radial cone:

$$\begin{aligned} & \mathcal{K}_{\mathcal{P}}(\mathbf{v}) \coloneqq \operatorname{cone}(\mathcal{P} - \mathbf{v}) + \mathbf{v} \\ &= \{ x \in \mathbb{R}^n : \mathcal{A}_{i,*} x \le b_i \text{ for all } i \text{ with } \mathcal{A}_{*,i} \mathbf{v} = b_i \} \end{aligned}$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex
 ⁽¹⁾) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex
 ⁽¹⁾) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex O) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

What remains?

- Matching polytopes & friends (this talk).
- Stable-set polytopes of claw-free or perfect graphs.

T-Joins & T-Cuts

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	•0	000	00

Definitions $(K_n = (V_n, E_n)$ complete graph on *n* nodes; $T \subseteq V$, |T| even):

► $J \subseteq E$ is a *T*-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$

T-Joins & T-Cuts

C	OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
0	00000	•0	000	00

Definitions ($K_n = (V_n, E_n)$ complete graph on *n* nodes; $T \subseteq V$, |T| even):

► $J \subseteq E$ is a *T*-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$ ► $C = \delta(S) \subseteq E$ is a *T*-cut if $|S \cap T|$ is odd.

Facts:

- Both minimization problems can be solved in polynomial time for $c \ge \mathbb{O}$.
- Each T-join J intersects each T-cut C in at least one edge:

$$|J \cap \mathbf{C}| = \langle \chi(J), \chi(\mathbf{C}) \rangle \ge 1$$

Matthias Walter

T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each *T*-cut *C*
 - $x_e \ge 0$ for each $e \in E$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J*
 - $x_e \ge 0$ for each $e \in E$

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**
 - $x_e \ge 0$ for each $e \in E$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

• A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T\text{-join}}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each \mathbf{T} -cut \mathbf{C}
 - $x_e \ge 0$ for each $e \in E$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

• A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.

• Thus, $P_{T\text{-join}}(n)^{\dagger}$ contains $P_{\text{pmatch}}(|T|)$ as a face.

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each \mathbf{T} -cut \mathbf{C}
 - $x_e \ge 0$ for each $e \in E$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- ▶ A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- Thus, $P_{T\text{-join}}(n)^{\uparrow}$ contains $P_{\text{pmatch}}(|T|)$ as a face.
- Consequence:

 $\operatorname{xc}(P_{T-\operatorname{join}}(n)^{\uparrow}) \geq 2^{\Omega(|T|)}$

Matthias Walter

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**
 - $x_e \ge 0$ for each $e \in E$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- ▶ A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- Thus, $P_{T\text{-join}}(n)^{\dagger}$ contains $P_{\text{pmatch}}(|T|)$ as a face.
- Consequence:

$$\operatorname{xc}(P_{T\operatorname{-join}}(n)^{\uparrow}) \geq 2^{\Omega(|T|)}$$

Proposition (Walter & Weltge, 2018)

For every *n* and every set $T \subseteq V_n$, $\operatorname{xc}(P_{T\text{-}join}(n)^{\uparrow}) \leq \mathcal{O}(n^2 \cdot 2^{|T|})$.

Matthias Walter

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^d_+)$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^d_+ \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^d_+)$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	●OO	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^d_+)$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^d_+ \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^d_+)$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	● 00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	● 00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	● 00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	● 00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	●00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	●00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	● O O	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

- The blocker of P is defined via $B(P) := \{y \in \mathbb{R}^d_+ : (x, y) \ge 1 \text{ for all } x \in P\}.$
- If P is blocking, then B(B(P)) = P.

Blocking Polarity: Extensions

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1$.

Proof idea:

- Separation problem for inequalities is a linear program.
- Apply strong LP duality.

Blocking Polarity: Extensions

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1$.

Proof idea:

- Separation problem for inequalities is a linear program.
- Apply strong LP duality.

Consequences:

• xc(B(P)) and xc(P) differ by at most d.

Blocking Polarity: Extensions

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1$.

Proof idea:

- Separation problem for inequalities is a linear program.
- Apply strong LP duality.

Consequences:

- xc(B(P)) and xc(P) differ by at most d.
- $2^{\Omega(|\mathcal{T}|)} \leq \operatorname{xc}(P_{T\operatorname{-cut}}(n)^{\uparrow}) \leq \mathcal{O}(n^2 \cdot 2^{|\mathcal{T}|}).$

Blocking Polarity: Radial Cones

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Polar object of radial cone:

Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Blocking Polarity: Radial Cones

Polar object of radial cone:

Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let
$$P \subseteq \mathbb{R}^d_+$$
 be a blocking polyhedron and let $v \in P$.
(i) $F_{B(P)}(v) = \{y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \ge 1 \ \forall x \in K_P(v) \}.$
(ii) $K_P(v) = \{x \in \mathbb{R}^d : \langle y, x \rangle \ge 1 \ \forall y \in F_{B(P)}(v) \}.$

-	RWTHAACHEN	
	UNIVERSITY	

Matthias Walter

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Blocking Polarity: Radial Cones

Polar o	bject	of	radial	cone:
---------	-------	----	--------	-------

Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let
$$P \subseteq \mathbb{R}^d_+$$
 be a blocking polyhedron and let $v \in P$.
(i) $F_{B(P)}(v) = \{y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \ge 1 \ \forall x \in K_P(v) \}.$
(ii) $K_P(v) = \{x \in \mathbb{R}^d : \langle y, x \rangle \ge 1 \ \forall y \in F_{B(P)}(v) \}.$

Consequence:

- $xc(K_P(v))$ and $xc(F_{B(P)}(v))$ differ by at most 1.
- To prove lower or upper bounds on $xc(K_P(v))$, analyze $F_{B(P)}(v)$!

	RWTHAACHEN
Contraction of the local division of the loc	UNIVERSITY

Matthias Walter

Extended Formulations for Radial Cones

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

	OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
_	000000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join} J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join} J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof:

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof:

By Lemma, theorem reduces to xc(P) for

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{\mathsf{T-cut}}(n)^{\dagger} : \sum_{e \in J} x_e = 1 \right\}.$$

For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀ e ∈ J \ {m}).

Matthias Walter

OPT, /	AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
0000	000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{\mathsf{T-cut}}(n)^{\dagger} : \sum_{e \in J} x_e = 1 \right\}.$$

- For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀e ∈ J \ {m}).
- But F_m is also a face of $P_{T'-\text{cut}}(n)^{\uparrow}$ for T' = m (set containing the nodes).

OPT, /	AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
0000	000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{\mathsf{T-cut}}(n)^{\dagger} : \sum_{e \in J} x_e = 1 \right\}.$$

- For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀e ∈ J \ {m}).
- But F_m is also a face of $P_{T'-cut}(n)^{\uparrow}$ for T' = m (set containing the nodes).
- We obtain $xc(F_m) \leq \mathcal{O}(n^2 \cdot 2^{|T'|}) = \mathcal{O}(n^2)$.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{T-\mathrm{cut}}(\mathbf{n})^{\dagger} : \sum_{e \in J} x_e = 1 \right\}.$$

- For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀e ∈ J \ {m}).
- But F_m is also a face of $P_{T'-cut}(n)^{\uparrow}$ for T' = m (set containing the nodes).
- We obtain $\operatorname{xc}(F_m) \leq \mathcal{O}(n^2 \cdot 2^{|T'|}) = \mathcal{O}(n^2)$.
- P is convex hull of union of all F_m .

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

OPT, AUG & F	Polyhedra T-Joins &	T-Cuts Blocking Polarity	Results
000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

OPT, AUG & F	Polyhedra T-Joins &	T-Cuts Blocking Polarity	Results
000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

Proof:

• Let $v = \chi(\delta(S))$.

	OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
_	000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \left\{ x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

	OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
_	000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

• Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.
- ▶ *F* ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| 2$.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.
- ▶ *F* ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| 2$.
- We obtain $xc(P) \ge xc(F) \ge 2^{\Omega(|T_i|)}$ for i = 1, 2.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

OPT, AUG & Polyhedra	T-Joins & T-Cuts	Blocking Polarity	Results
000000	00	000	00

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

Other candidates for investigation:

- Stable-set polytopes of claw-free graphs (current work with Gianpaolo Oriolo and Gautier Stauffer).
- Stable-set polytopes of perfect graphs (polyhedral description is known, but best (known) extended formulation has $\mathcal{O}(n^{\log n})$ facets).

