
Extended Formulations for Radial Cones

Matthias Walter (RWTH Aachen)

Joint work with

Stefan Weltge (TU Munich)

Colloquium on Combinatorics, Paderborn, November 2018



OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Optimization & Augmentation

Combinatorial optimization problem:
▸ Ground set E (finite)
▸ Feasible solutions F ⊆ 2E

▸ Objective vector c ∈ QE

▸ Goal: minimize cost c(F) ∶= ∑e∈F ce over all F ∈ F .

Augmentation problem:
▸ Given F ∈ F , determine optimality or find F ′

∈ F with c(F ′
) < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in
polynomial time if and only if we can solve the optimization problem (for
arbitrary objective vectors) in polynomial time.
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Polyhedral Approach: Optimization

Polyhedral method:
▸ Identify F ∈ F with χ(F) ∈ {0,1}E s.t. χ(F)e = 1 ⇐⇒ e ∈ F .

▸ Let X ∶= {χ(F) ∶ F ∈ F} ⊆ {0,1}E .
▸ Optimization problem is then to minimize ⟨c, x⟩ over x ∈ X .
▸ Find an outer description of conv(X), i.e., conv(X) = {x ∈ RE

∶ Ax ≤ b}.
▸ Optimization problem is now an LP and we can use black-box solvers.
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Extended Formulations

One drawback of the polyhedral method:
▸ Consider X ∶= {x ∈ {0,1}n ∶ ∑

n
i=1 even}.

▸ Optimization is easy: first over {0,1}n, potentially flip 1 coordinate.

▸ Inequality description (Jeroslow, 1975) requires 2n−1 inequalities:

∑

i∈I

(1 − xi) +∑
i∉I

xi ≥ 1 for all I ⊆ [n] with ∣I ∣ odd

Potential cure: extended formulations
▸ P = conv(X) has many facets, but maybe there exists an extension (Q, π)

(Q ⊆ Rd polyhedron, π ∶ Rd
→ Rn linear with P = π(Q)) with few facets?

▸ The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q, π) of P.

▸ Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let P1, . . . ,Pk ⊆ Rn be polytopes. Then
xc(conv(P1 ∪⋯ ∪ Pk)) ≤ ∑

k
i=1(xc(Pi) + 1).

Disjunctive programming:
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conv(

X

)

=
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conv(
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= k}
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▸ Applying the theorem: xc(conv(X)) ≤ O(n2
)
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Limitations

Hard problems:
▸ Max-Cut problem: cut polytope for Kn (complete graph with n nodes) has

extension complexity 2Ω(n) (Fiorini, Massar, Pokutta, Tiwary & de Wolf,
2012), best bound is 1.5n (Kaibel & Weltge, 2013).

▸ Lots of other hard problems inherit lower bound:
▸ If F is face of P, then xc(F) ≤ xc(P).
▸ For linear maps π we have xc(π(P)) ≤ xc(P).

▸ Based on Karp reductions, write cut polytope as projection of a face of your
favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

▸ A perfect matching in a graph G = (V ,E) is a set M ⊆ E with
∣M ∩ δ(v)∣ = 1.

▸ The weighted perfect matching problem can be solved in polynomial time
(Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even n, xc(Ppmatch(n)) ≥ 2Ω(n). Here, Ppmatch(n) denotes the perfect
matching polytope for Kn.
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favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

▸ A perfect matching in a graph G = (V ,E) is a set M ⊆ E with
∣M ∩ δ(v)∣ = 1.

▸ The weighted perfect matching problem can be solved in polynomial time
(Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even n, xc(Ppmatch(n)) ≥ 2Ω(n). Here, Ppmatch(n) denotes the perfect
matching polytope for Kn.
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OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Polyhedral Approach: Augmentation

Polyhedral version of the augmentation problem:

▸ Consider a polyhedron P = {x ∈ Rn
∶ Ax ≤ b} and an objective vector

c ∈ Rn.

▸ Given a point v ∈ P, determine optimality or find improving direction
d ∈ Rn, i.e., ⟨c,d⟩ < 0 and v + d ∈ P.

▸ The polyhedron for this task is the radial cone:

KP(v) ∶= cone(P − v) + v

= {x ∈ Rn
∶ Ai,∗x ≤ bi for all i with A∗,iv = bi}

v
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OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Radial Cones: Basic results

Nice problems:

▸ For v ∈ P we have xc(KP(v)) ≤ xc(P).

▸ Consequence: nice polyhedra have nice radial cones.

Hard problems:

▸ Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial
cone of the cut polytope at vertex O) has exponential extension
complexity.

▸ Extension complexity of radial cones is inherited to projections and faces.

▸ Consequence: exponential lower bounds for your favorite polytopes (TSP,
Stable set, 3d matching, etc.) that correspond to hard problems.

What remains?

▸ Matching polytopes & friends (this talk).

▸ Stable-set polytopes of claw-free or perfect graphs.
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OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

T -Joins & T -Cuts

Definitions (Kn = (Vn,En) complete graph on n nodes; T ⊆ V , ∣T ∣ even):

▸ J ⊆ E is a T -join if
∣J ∩ δ(v)∣ is odd ⇐⇒ v ∈ T

▸ C = δ(S) ⊆ E is a T -cut if
∣S ∩T ∣ is odd.

S

Facts:

▸ Both minimization problems can be solved in polynomial time for c ≥ O.

▸ Each T -join J intersects each T -cut C in at least one edge:

∣J ∩ C ∣ = ⟨χ(J), χ(C)⟩ ≥ 1
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OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

T -Join- and T -Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

▸ T -join Polyhedron PT -join(n)
↑:

⟨χ(C), x⟩ ≥ 1 for each T -cut C

xe ≥ 0 for each e ∈ E

▸ T -cut Polyhedron PT -cut(n)
↑:

⟨χ(J), x⟩ ≥ 1 for each T -join J

xe ≥ 0 for each e ∈ E

Relation to perfect matchings:
▸ A T -join J ⊆ E is a perfect matching on nodes T if and only if x = χ(J)

satisfies the valid inequalities xe ≥ 0 for all e ∈ E ∖ E[T ] and ∑e∈δ(v) xe ≥ 1
for all v ∈ T with equality.

▸ Thus, PT -join(n)
↑ contains Ppmatch(∣T ∣) as a face.

▸ Consequence:
xc(PT -join(n)

↑
) ≥ 2Ω(∣T ∣)

Proposition (Walter & Weltge, 2018)

For every n and every set T ⊆ Vn, xc(PT -join(n)
↑
) ≤ O(n2

⋅ 2∣T ∣).
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OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Blocking Polarity: Basics

Definitions:

▸ A polyhedron P ⊆ Rd
+ is blocking if x ′ ≥ x implies x ′ ∈ P for all x ∈ P.

▸ Possible descriptions are:

P = {x ∈ Rd
+ ∶ ⟨y

(i), x⟩ ≥ 1 for i = 1, . . . ,m} (y (1), . . . , y (m) ∈ Rd
+)

P = conv{x(1), . . . , x(k)} +Rd
+ (x(1), . . . , x(k) ∈ Rd

+)

▸ The blocker of P is defined via B(P) ∶= {y ∈ Rd
+ ∶ ⟨x , y⟩ ≥ 1 for all x ∈ P}.

▸ If P is blocking, then B(B(P)) = P.

1
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5
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5
)
⊺

x1 ≥ 0

(3,1)x ≥ 1

(1,2)x ≥ 1

x2 ≥ 0

P
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(1,2)⊺
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(0,1)x ≥ 1

B(P)
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OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and γ ∈ R, let
P ∶= {x ∶ ⟨y , x⟩ ≥ γ for all y ∈ Q} .

Then xc(P) ≤ xc(Q) + 1.

Proof idea:

▸ Separation problem for inequalities is a linear program.

▸ Apply strong LP duality.

Consequences:

▸ xc(B(P)) and xc(P) differ by at most d .

▸ 2Ω(∣T ∣)
≤ xc(PT -cut(n)

↑
) ≤ O(n2

⋅ 2∣T ∣).
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Blocking Polarity: Radial Cones

Polar object of radial cone:
▸ Any v ∈ P defines a face FB(P)(v) ∶= {y ∈ B(P) ∶ ⟨v , y⟩ = 1} of B(P).

Lemma

Let P ⊆ Rd
+ be a blocking polyhedron and let v ∈ P.

(i) FB(P)(v) = {y ∈ Rd
∶ ⟨v , y⟩ = 1, ⟨x , y⟩ ≥ 1 ∀x ∈ KP(v)}.

(ii) KP(v) = {x ∈ Rd
∶ ⟨y , x⟩ ≥ 1 ∀y ∈ FB(P)(v)}.
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B(P)

Consequence:
▸ xc(KP(v)) and xc(FB(P)(v)) differ by at most 1.
▸ To prove lower or upper bounds on xc(KP(v)), analyze FB(P)(v)!

Matthias Walter Extended Formulations for Radial Cones Kolkom 2018 11 / 14



OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Blocking Polarity: Radial Cones

Polar object of radial cone:
▸ Any v ∈ P defines a face FB(P)(v) ∶= {y ∈ B(P) ∶ ⟨v , y⟩ = 1} of B(P).

Lemma

Let P ⊆ Rd
+ be a blocking polyhedron and let v ∈ P.

(i) FB(P)(v) = {y ∈ Rd
∶ ⟨v , y⟩ = 1, ⟨x , y⟩ ≥ 1 ∀x ∈ KP(v)}.

(ii) KP(v) = {x ∈ Rd
∶ ⟨y , x⟩ ≥ 1 ∀y ∈ FB(P)(v)}.

1

0 1 2

( 1
5
, 2

5
)
⊺

x1 ≥ 0

(3,1)x ≥ 1

(1,2)x ≥ 1

x2 ≥ 0

P

3

2

1

0 1 2 3 4

(1,2)⊺

(3,1)⊺

(1,0)x ≥ 1

( 1
5
, 2

5
)x ≥ 1

(0,1)x ≥ 1

B(P)

Consequence:
▸ xc(KP(v)) and xc(FB(P)(v)) differ by at most 1.
▸ To prove lower or upper bounds on xc(KP(v)), analyze FB(P)(v)!

Matthias Walter Extended Formulations for Radial Cones Kolkom 2018 11 / 14



OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Blocking Polarity: Radial Cones

Polar object of radial cone:
▸ Any v ∈ P defines a face FB(P)(v) ∶= {y ∈ B(P) ∶ ⟨v , y⟩ = 1} of B(P).

Lemma

Let P ⊆ Rd
+ be a blocking polyhedron and let v ∈ P.

(i) FB(P)(v) = {y ∈ Rd
∶ ⟨v , y⟩ = 1, ⟨x , y⟩ ≥ 1 ∀x ∈ KP(v)}.

(ii) KP(v) = {x ∈ Rd
∶ ⟨y , x⟩ ≥ 1 ∀y ∈ FB(P)(v)}.

1

0 1 2

( 1
5
, 2

5
)
⊺

x1 ≥ 0

(3,1)x ≥ 1

(1,2)x ≥ 1

x2 ≥ 0

P

3

2

1

0 1 2 3 4

(1,2)⊺

(3,1)⊺

(1,0)x ≥ 1

( 1
5
, 2

5
)x ≥ 1

(0,1)x ≥ 1

B(P)

Consequence:
▸ xc(KP(v)) and xc(FB(P)(v)) differ by at most 1.
▸ To prove lower or upper bounds on xc(KP(v)), analyze FB(P)(v)!

Matthias Walter Extended Formulations for Radial Cones Kolkom 2018 11 / 14



OPT, AUG & Polyhedra T -Joins & T -Cuts Blocking Polarity Results

Radial Cones of T -Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set T ⊆ Vn with ∣T ∣ even and every vertex v of PT -join(n)
↑,

corresponding to a T -join J ⊆ En in Kn, the extension complexity of the radial
cone of PT -join(n) at v is most O(∣J ∣ ⋅ n2

).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

▸ By Lemma, theorem reduces to xc(P) for

P ∶= {x ∈ PT -cut(n)
↑
∶∑
e∈J

xe = 1} .

▸ For each m ∈ J, let Fm be the face of P
with xm = 1 (and xe = 0 ∀e ∈ J ∖ {m}).

▸ But Fm is also a face of PT ′-cut(n)
↑ for

T ′
= m (set containing the nodes).

▸ We obtain xc(Fm) ≤ O(n2
⋅ 2∣T

′
∣
) = O(n2

).

▸ P is convex hull of union of all Fm.
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Radial Cones of T -Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets T ⊆ Vn with ∣T ∣ even and vertices v of PT -cut(n)
↑, the extension

complexity of the radial cone of PT -cut(n) at v is least 2Ω(∣T ∣).

Proof:

▸ Let v = χ(δ(S)).

▸ By Lemma, theorem reduces to xc(P) for

P ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x ∈ PT -join(n)
↑
∶ ∑
e∈δ(S)

xe = 1

⎫⎪⎪
⎬
⎪⎪⎭

.

▸ Let t1 ∈ S , t2 ∈ Vn ∖ S as well as
U1 ∶= S ∖ {t1}, U2 ∶= (Vn ∖ (S ∪ {t2})).

▸ Let F be the face of P with x{t1,t2} = 1
and xe = 0 for all edges between U1, U2

and {t1, t2}.

▸ F ist a Cartesian product of a vector and
two (T ∩Ui)-join polyhedra on Ui for
i = 1,2, where ∣T1∣ + ∣T2∣ = ∣T ∣ − 2.

S

▸ We obtain xc(P) ≥ xc(F) ≥ 2Ω(∣Ti ∣) for i = 1,2.
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▸ We obtain xc(P) ≥ xc(F) ≥ 2Ω(∣Ti ∣) for i = 1,2.
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Thanks!

Conclusion:

▸ Extended formulations can help, but only sometimes.

▸ Although polynomially solvable, there is no obvious way to solve the
minimum-weight T -cut problem with LP techniques.

Other candidates for investigation:

▸ Stable-set polytopes of claw-free graphs (current work with Gianpaolo
Oriolo and Gautier Stauffer).

▸ Stable-set polytopes of perfect graphs (polyhedral description is known,
but best (known) extended formulation has O(nlog n

) facets).
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