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The Integer Hull and Integrality of a Polyhedron

Definitions — Integer hull and integrality

Let P C R" be a polyhedron. The set conv(P N Z") is called the integer hull. P is
called integral if it is equal to its integer hull.

Definition — Perfect formulation

A MIP formulation with integer variables / C [n] and LP relaxation P is called a perfect formulation if
conv{x € P:x; € Z Vi€ l} = P.

Remark:

» For IPs (i.e., | = [n]), a formulation with LP relaxation is P is perfect if and only if P is integral.

N
N
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Total Unimodularity

Definition — Total unimodularity

A matrix A € R™*" is totally unimodular (TU) if every square submatrix has
determinant —1, 0 or +1.

Proposition — Properties of TU matrices

Total unimodularity is maintained under these operations:

® Transposition ® Taking submatrices

® Permutation of rows or columns @ Appending copies of rows or columns.

© Scaling rows or columns by —1. @ Appending unit rows or columns

However:
» Total unimodularity is not maintained under appending other TU matrices:

a=(D). s=(4) wa=(1 1)

1 1 1 1
» Elementary row/column operations may destroy TU: [1 0 | ~ |1 -1
0 -1 0 -1
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Submatrices:
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Properties of Total Unimodularity

Proposition — Properties of TU matrices

Total unimodularity is maintained under these operations:
@ Transposition @ Taking submatrices
® Permutation of rows or columns @ Appending copies of rows or columns.

® Scaling rows or columns by —1. @ Appending unit rows or columns

Proof: Reminder for TU:
@ Transposition: for row subsets / and column subsets J we have ]
det((AT)J,,) = det(A,,J).
® Permutation of rows and columns: does not affect absolute value of determinant. [Z V77

® Scaling rows or columns by —1: does not affect absolute value of determinant.

@ Taking submatrices: by definition ?
. . . . . . . A VA

® Appending copies of rows or columns: if multiple copies participate in a
submatrix, the determinant is 0.

® Appending unit rows or columns: Apply Laplace rule for determinant

calculation. [ | J«;ﬁ(%) 1 0,44
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TU Coefficient Matrix and Integral Right-hand-side imply Integrality of Polyhedron

Theorem — Implications of TU for polyhedra [Hoffman & Kruskal, '56]

Let A€ R™*" be TU and b € Z™. Then P = {x € R" : Ax < b} is integral.

Lemma — Cramer’s Rule [Cramer, 1750]

Let B € Z"™" be invertible. Then the unique solution to Bx = d satisfies x; =
det(B')/ det(B) where B' arises from B by replacing the i'th column with d.

4

Lemma 4.4 — Consequence of Cramer’s Rule

Let B € Z"™" and d € Z" be such that |det(B)| = 1 holds. Then the unique
solution to Bx = d is integral.

Proof of the lemma:
» By Cramer's Rule, the unique solution is x; = det(B')/ det(B).
> Since all entries of B are integer, also det(B’) is an integer.

» Since the denominator is either —1 or +1, each x; is integer.
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TU Coefficient Matrix and Integral Right-hand-side imply Integrality of Polyhedron

Theorem 4.4 — Implications of TU for polyhedra [Hoffman & Kruskal, '56]

Let A€ R™" be TU and b € Z™. Then P = {x € R" : Ax < b} is integral.

Lemma — Consequence of Cramer’s Rule

Let B € Z"" and d € Z" be such that
|det(B)| = 1 holds. Then the unique solu-
tion to Bx = d is integral.

Proof:

» Let Q :=conv(PNZ") C P be P’s integer hull.

» Assuming P Z Q, there must be an inequality a™x < f3 that is valid for @ but
not for P, i.e, max{a'™x : x € P} > > max{a'™x : x € Q}.

» We can assume that the first LP is bounded: otherwise, add —M < x; < M for
all i € [n] for sufficiently large M, which does not destroy TU by property (6).

» Let x* € R" be an optimal basic solution of the first LP. Note: x* ¢ Q.

» There exists a subsystem Bx < d of Ax < b consisting of n inequalities such
that x* is the unique solution of Bx = d.

» The lemma implies x* € Z", and thus x* € Q, a contradiction. [ ]
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A Criterion for Establishing Total Unimodularity

Theorem 4.6 — Criterion of Ghoulia-Houri (row version) [Ghouila-Houri, '62]

A matrix A € R™" is TU if and only if each subset /| C [m] of rows can be
partitioned into /™ and /™ such that the following holds:

DAL= A e{-1,0,41}". (1)

ielt i€el=

Proof: not in this lesson.

- TteT I
Fo-all S} T eT - -
Telw] B =
nd &~ i {'110113
-5 <

Hint: when applying it, we have to consider any | C [m] and construct /™ and /~.
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Reminder:

Matrix A is TU if
det(B) € {-1,0,+1}
holds for every square
submatrix B.

Software for testing:

5E5R

EE8 Combinatorial

Matrix Recognition
discopt.github.io/cmr/
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© Application: Bipartite Matchings
@ Matchings
@ Incidence Matrices of Undirected Graphs
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Cuts & Matchings

Definition — Cuts and shores in undirected graphs

Let G = (V, E) be an undirected graph and S C V be a node set. The edge set
0(S) ={e € E:|enS| =1} is called the cut induced by S and S and V \ S
are called its shores. For v € V we write 6(v) := 6({v}) for the star cut. The cut
0(2) =9d(V) = @ is called trivial cut.

Lo S9=5(V\S) N
: , A

Definition — Matching, perfect matching
Let G = (V, E) be an undirected graph. An edge subset M C E is called a matching
of G if [MN§(v)| <1 for every node v € V. A matching M with M| = }|V| is

called perfect.

Perfect Formulations
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The Matching Problem

Problem — Matching problem
> Input: Graph G = (V, E) and weights w € RE.
» Feasible solutions: Matchings M C E.

> Goal: Maximize w(M) =3 .\, we.

Variables:
» x. € {0,1} for e € E: xe. =1 <= e belongs to the matching.
IP:
max Z WeXe (2a)
e€E
s.t. Z xe <1 YveV (2b)
e€s(v)
x € {0,1}F (2c)

Two alternatives for perfect matchings:

S xe =1V (3) or dxe=1  WeVv (4

ecE ecd(v)
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Incidence Matrices of Undirected Graphs

Definition — Incidence matrix of a graph
Let G = (V, E) be a graph. Its node-edge incidence matrix is the matrix M €
{0,1}V*E with My . =1 <= vEe.

a b a [101 00000
e b [11061 0010
c 014001 00 O
d|oooqe 10
d 2 |666100100
¢ 7 g loooo1 01
IP formulation for matching;: IP formulation for stable set:
max Zwexe (2a) max Zwvxv (5a)
ecE vev
st. Mx<1 (2b) st. Mx<1 (5b)
x € {0,1}" (5¢)

x € {0,1}F (2¢)
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Incidence Matrices of Undirected Graphs

Theorem 4.18 — Total unimodularity of incidence matrix of a graph

Let G = (V, E) be a graph. lts node-edge incidence matrix M € {0,1}"*E is totally
unimodular if and only if G is bipartite.

Sufficiency proof:
» Let G = (V, E) be a bipartite graph with bipartition V = AU B and
M € {0, +1}Y*E be its node-edge incidence matrix.
> Let /| C V be a subset of M's rows. Each column of M, . has at most two 1's.
> Partitioning / into /" := /N A and |~ := I N B satisfies (1) since the two 1's in
each column are not both in /™ and not both in /™.
» The result follows by the criterion of Ghouila-Houri.

Matrix for odd cycle:

Necessity proof:
» Consider a cycle of odd length.

» Its incidence matrix has determinant 2. |
q 1 1
Corollary — Perfect formulations for matching and stable-set [
Let G = (V, E) be a bipartite graph. Then IP formulations (2) and (5) are perfect :( 11 .
formulations for the matching and stable-set problems, respectively. e " 11
10 / 22
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Agenda

© Application: Network Flows
@ Incidence Matrices of Directed Graphs / Network Flows
@ Maximum Flows & Minimum Cuts
@ Shortest Paths
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Incidence Matrices of Directed Graphs

Definition — Incidence matrix of a directed graph

Let D = (V,A) be a digraph. Its node-arc incidence matrix is the matrix M €

{—1,0,1}"*A defined via 1 fw=u,

My vy = +1  ifw=v,

0 otherwise.
Theorem 4.9 — Total unimodularity of incidence matrix of a digraph Example:
The node-arc incidence matrix of any digraph is totally unimodular. L
Q
Proof: c
» Let D = (V,A) be a digraph and M € {—1,0,+1}"*# be its incidence matrix. ¢ e
> C ' .
Let /| C V be a subset of M's rows o (=141 P
» Partitioning / into /™ := I and I~ := @ satisfies (1). b [ +1-1-1
» The result follows by the criterion of Ghouila-Houri. | ; +1-4~1+4
(2 141
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Network Flows

Definition — Directed cuts

Let D = (V,A) be a digraph and S C V be a node set. The arc set §°°(S) =
{(u,v) € A:ueS, v ¢&S}is called the outgoing cut induced by S. The set
8"(S) == 6°(V'\ S) is called the incoming cut induced by S. For v € V we write
5% (v) == 6 ({v}) and 6"(v) == 6" ({v}).

Definition — s-t-flow and flow polytope

Flow constraints:
Let D = (V,A) be a digraph with source and sink

nodes s, t € V, and let u € R4, be arc capacities. Z fa— Z =0 VveV\{st} (62)
> o 0 A Q@ a€sin(v) agsout(v
An s-t-flow is a vector f € R” that satisfies (6). 0 S f,<u VacA (6b)
» The set of all s-t-flows is called the s-t-flow )
polytope of (D, u). J I (v)
Problem — Maximum s-t-flow problem
» Input: Digraph D = (V, A), nodes s, t € V, arc capacities u € Rgo. e
v

> Feasible solutions: s-t-flows f € R”.

» Goal: Maximize flow value > f— > f. ou‘-( 3
a€sin(t) agsout(t)
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Integrality of Flow Polytopes

Proposition — Constraint matrix of flow formulation

The constraint matrix for equations (6a) of the s-t-flow polytope is a submatrix of
the node-arc incidence matrix of the digraph (obtained by removing the rows s, t).

Consequence of total unimodularity of node-arc incidence matrices:

Corollary — Integrality of flow polytopes

E le:
Let D = (V, A) be a digraph with two nodes s,t € V, and let u € Zgo be integral xample
arc capacities. Then the s-t-flow polytope is integral. a b
c
d ¢
a (=14 -1
e[ +1-1-1
c +1-1
d ~1+4
¢ 141
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Maximum Flows & Minimum Cuts

Definition — s-t-cut
Let D = (V,A) be a digraph with nodes s,t € V. An s-t-cut is a cut §°*°(S)
induced by aset SC V withs€ Sand t ¢ S.

Problem — Minimum s-t-cut problem An s-t-cut:
» Input: Digraph D = (V/, A), source s € V, sink
t € V, and arc capacities u € Rgo.
> Feasible solutions: s-t-cuts §°*(S).

» Goal: Minimize the capacity Y. u, of the cut.
aE5oUt(S)

Theorem 4.15 — Max-Flow Min-Cut Theorem [Ford & Fulkerson, '62]

Let D = (V, A) be a digraph with source s € V, sink t € V and capacities u € Rgo. Then the maximum
value of an s-t-flow is equal to the minimum capacity of an s-t-cut.
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Minimum Cost Flows

Definition — b-flows

Let D = (V, A) be a digraph, u € Rgo be arc capacities and let b € R be a demand

vector that satisfies S b, = 0. A b-flow is a vector f € R? that satisfies (7).
vev
A b-flow for b = Qv is called a circulation.

S = Y f=b VeV, (7a)

aesin(v) a€bout(v)

(7b) Flow conservation:

0<fhL<u, VacA.

Relation to maximum flow problem: J tw (V‘)

» Find largest by = —bs such that feasible b-flow with b, = 0 for all v # s, t exists. \

Problem — Minimum cost b-flow/circulation problem A >
» Input: Digraph D = (V/, A), arc capacities u € Réo, costs ¢ € R” and v

demands b € RY (circulations: b = Q).
> Feasible solutions: b-flows f € R”. S out (V)
» Goal: Minimize costs Y caifa.
acA
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Shortest Paths via b-Flows

Problem — Shortest path problem

» Input: Digraph D = (V, A), source s € V, sink t € V and arc lengths £ € R*

that are conservative: ¢(C) := > ¢, > 0 for every cycle C in D.
acC

» Feasible solutions: s-t-paths P C A.
» Goal: Minimize the length ¢(P).

Variables: A feasibl lution:
» f,e€{0,1} forac A: f, =1 <= a s part of the path or a redundant cycle. easible solution:
IP: 5
min Zéafa (8a)
€A -1 fv=s
st Y fim Y fi=(+1 ifv=t Vv eV (8b)
agsin(v)  a€dt(v) 0 otherwise
fe{o,1}" (8¢c)

Proposition — Correctness of shortest path formulation

The shortest path problem is correctly modeled by (8).
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Correctness Proof for Flow Formulation for Shortest Paths

Proposition — Correctness of shortest path formulation

The shortest path problem is correctly modeled by (8).

1P min Zfafé, (8a)
acA -1 ifv=s
st. > h— Y fH=0+41 ifv=t Vv eV (8b)
agsin(v)  a€s(v) 0  otherwise . .
A feasible solution:
fe{o,1}* (8¢) 5
Proof:

> Let b € RY be the right-hand side vector of (8b).

» For each path P C A, x(P) is a b-flow with £Tx(P) = £(P).
> Let f € {0,1}" be an f-minimum (integral) b-flow f.
» By flow conservation, f contains an s-t-path.
» By ¢-minimality and due to ¢(C) > 0 for each cycle C, we have that
f =x(P)+ x(G) + - x(C«), where P is an {-shortest s-t-path and C; are
cycles in D with £(C;) =0 for i =1,2,... k. t
» Remove cycles to extract P from f. Observe ¢(P) = {Tf. |
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Perfect Formulation for Shortest Paths

LP relaxation:

min Zéafa (8a)
a€A -1 ifv=s
st. Y fh-Y h={+1 ifv=t Vv eV (8b)
acsin(v)  a€s(v) 0 otherwise
f € RS (8¢")

Consequence of total unimodularity of node-arc incidence matrices:

Corollary — Perfect shortest-path formulation
Formulation (8) is a perfect formulation for the shortest path problem.

Matthias Walter

Perfect Formulations

A feasible solution:

s



Agenda

@ Other Techniques to Establish Perfect Formulations
@ Laminar Set Families
@ Uncrossing
@ Intersections of Submodular Polytopes

Matthias Walter Perfect Formulations



Laminar Set Families

Definition — Laminar set family and incidence matrices

Let E be finite and let £ C 2F be a family of subsets. The incidence matrix of £
is the matrix M € {0,1}4*E defined via Mo, =1 <= e € A. We call £ laminar
if every two elements A, B € £ satisfy ACBorBC Aor ANB =2.

Lemma — Incidence matrices of two laminar families [Edmonds, '70]

Let £ be the union of two laminar families. Then its incidence matrix is TU.

—_
—
o
o
o
o
o
[y
o
o
o
o

o
= =
o=
= o=
= = O
= O O
—
—_
o
o
o
o

O O O O o
O O O O o
= O~ OO
= O = = =
= O~ KM= O
== O O O
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Submodular Functions

Definitions — Submodular, monotone and normalized set function

Let E be a finite ground set. A function f : 25 — R is called
® submodular if (SN T)+f(SUT)<f(S)+f(T) holds for all S, T C E,
® monotone if f(S) < f(T) holds for all SC T C E, and
© normalized if f(@) = 0.

Lemma — Diminishing returns

f is submodular if and only if for all AC 5 C E and each s € E \ B, we have
f(AU {s}) — f(A) > f(B U {s}) — f(B). 9)
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Submodular Functions and Uncrossing

Lemma (Exercise 4.25) — Uncrossing for Submodular Functions

Let f : 2 — R be a submodular normalized function. Let X be a vertex of the
polyhedron P = {x € Rf : 3" _sx. < f(S) forall S C E}. Then X satisfies at

equality |E| linearly independent inequalities > . s xe = f(S;) for i = 1,2,...|E|
such that the family £ :={S; | i =1,2,...,|E|} is laminar.
Proof:

» Consider among all such families £ one that maximizes p(L£) = ¢, |S|2.
» Suppose there exist sets S, T € L that cross.
» Since X satisfies the two inequalities with equality and since f is submodular, we obtain

F)+AT) =) %4> Xe= > et > X<FSNT)+F(SUT)<F(S)+F(T)
ecS ecT eeSNT ecSUT
Thus, equality holds throughout.

Hence, also the inequalities for SN T and S U T are satisfied with equality.

We can replace S and T by SN T and SU T since both coefficient vectors pairs span the same space.
This would increase ¢(£) dueto [SUTP+|SNTP—|SP—|T?=2-|S\T|-|T\S|>0,a
contradiction to the choiceof L. W

vvyyy
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Intersections of Submodular Polytopes

Definition — Submodular polytope

Let E be a finite ground set and let f : 2 3 R be submodular, monotone and
normalized. Its submodular polytope is defined as

PO = {x eREo: Y x < £(S) VSCE}

eeS

Theorem — Intersection of 2 submodular polytopes is integral Examples of matroids:
[Edmonds, '70] » Linearly independent
Let fi,f : 25 — R be integer-valued, submodular, monotone and normal- subsets of a finite set
ized. Then Ps(:L N Ps(:i) is an integral polytope. of vectors.
» Sets of at most a
Proof: certain cardinality.
» Combine lemmas about laminar families and uncrossing. | » Forests in a graph.

» Node sets that can be
can be covered by a
matching.

Main combinatorial example:

» Rank functions of matroids are submodular.
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Lesson Recap — Any Questions?

@ Perfect Formulations
@ Integral Polyhedra
@ Total Unimodularity
@ A Criterion for Establishing Total Unimodularity

© Application: Bipartite Matchings
@ Matchings
@ Incidence Matrices of Undirected Graphs

© Application: Network Flows
@ Incidence Matrices of Directed Graphs / Network Flows
@ Maximum Flows & Minimum Cuts
@ Shortest Paths

@ Other Techniques to Establish Perfect Formulations
@ Laminar Set Families
@ Uncrossing
@ Intersections of Submodular Polytopes
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