UNIVERSITY OF TWENTE.

Perfect Formulations (Book Sections 4.1 - 4.4)

Preknowledge:

- Polyhedra ٧
- Cramer's rule
- Stable-set problem, matching problem, min-cost-flow problem

- Integrality of polyhedra
- Totally unimodular matrices Ν
- ► Application: bipartite matching / s-t-flows

Agenda

Perfect Formulations

- Integral Polyhedra
- Total Unimodularity
- A Criterion for Establishing Total Unimodularity

2 Application: Bipartite Matchings

- Matchings
- Incidence Matrices of Undirected Graphs

3 Application: Network Flows

- Incidence Matrices of Directed Graphs / Network Flows
- Maximum Flows & Minimum Cuts
- Shortest Paths

- Laminar Set Families
- Uncrossing
- Intersections of Submodular Polytopes

Agenda

Perfect Formulations

- Integral Polyhedra
- Total Unimodularity
- A Criterion for Establishing Total Unimodularity

2 Application: Bipartite Matchings

- Matchings
- Incidence Matrices of Undirected Graphs

Application: Network Flows

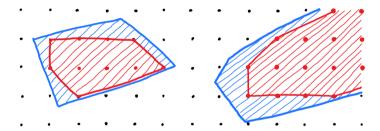
- Incidence Matrices of Directed Graphs / Network Flows
- Maximum Flows & Minimum Cuts
- Shortest Paths

- Laminar Set Families
- Uncrossing
- Intersections of Submodular Polytopes

The Integer Hull and Integrality of a Polyhedron

Definitions – Integer hull and integrality

Let $P \subseteq \mathbb{R}^n$ be a polyhedron. The set $\operatorname{conv}(P \cap \mathbb{Z}^n)$ is called the integer hull. P is called integral if it is equal to its integer hull.



Definition – Perfect formulation

A MIP formulation with integer variables $I \subseteq [n]$ and LP relaxation P is called a **perfect formulation** if $conv\{x \in P : x_i \in \mathbb{Z} \ \forall i \in I\} = P.$

Remark:

For IPs (i.e., I = [n]), a formulation with LP relaxation is P is perfect if and only if P is integral.

Matthias Walter

Total Unimodularity

Definition – Total unimodularity

A matrix $A \in \mathbb{R}^{m \times n}$ is totally unimodular (TU) if every square submatrix has determinant -1, 0 or +1.

Proposition – Properties of TU matrices

Total unimodularity is maintained under these operations:

- Transposition
- Permutation of rows or columns
- **③** Scaling rows or columns by -1. **⑤** Appending unit rows or columns

However:

► Total unimodularity is not maintained under appending other TU matrices:

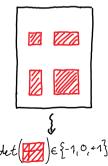
$$A = egin{pmatrix} 1 \ 1 \end{pmatrix}, \qquad B = egin{pmatrix} 1 \ -1 \end{pmatrix}, \qquad [A \mid B] = egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$

Taking submatrices

G Appending copies of rows or columns.

Elementary row/column operations may destroy TU: $\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & -1 \end{pmatrix}$

Submatrices:



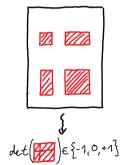
Properties of Total Unimodularity

Proposition – Properties of TU mat	rices
Total unimodularity is maintained under	er these operations:
 Transposition 	Taking submatrices
Permutation of rows or columns	Appending copies of rows or columns.
${f e}$ Scaling rows or columns by -1 .	6 Appending unit rows or columns

Proof:

- Transposition: for row subsets *I* and column subsets *J* we have $det((A^{T})_{J,I}) = det(A_{I,J})$.
- @ Permutation of rows and columns: does not affect absolute value of determinant.
- \odot Scaling rows or columns by -1: does not affect absolute value of determinant.
- Taking submatrices: by definition
- Appending copies of rows or columns: if multiple copies participate in a submatrix, the determinant is 0.
- Appending unit rows or columns: Apply Laplace rule for determinant calculation.

Reminder for TU:



TU Coefficient Matrix and Integral Right-hand-side imply Integrality of Polyhedron

Theorem – Implications of TU for polyhedra[Hoffman & Kruskal, '56]Let $A \in \mathbb{R}^{m \times n}$ be TU and $b \in \mathbb{Z}^m$. Then $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is integral.

Lemma – Cramer's Rule

[Cramer, 1750]

Let $B \in \mathbb{Z}^{n \times n}$ be invertible. Then the unique solution to Bx = d satisfies $x_i = \det(B^i)/\det(B)$ where B^i arises from B by replacing the *i*'th column with d.

Lemma 4.4 – Consequence of Cramer's Rule

Let $B \in \mathbb{Z}^{n \times n}$ and $d \in \mathbb{Z}^n$ be such that $|\det(B)| = 1$ holds. Then the unique solution to Bx = d is integral.

Proof of the lemma:

- By Cramer's Rule, the unique solution is $x_i = \det(B^i)/\det(B)$.
- Since all entries of B^i are integer, also det (B^i) is an integer.
- Since the denominator is either -1 or +1, each x_i is integer.

TU Coefficient Matrix and Integral Right-hand-side imply Integrality of Polyhedron

Theorem 4.4 – Implications of TU for polyhedra [Hoffman & Kruskal, '56] Let $A \in \mathbb{R}^{m \times n}$ be TU and $b \in \mathbb{Z}^m$. Then $P = \{x \in \mathbb{R}^n : Ax \le b\}$ is integral.

Lemma – Consequence of Cramer's Rule

Let $B \in \mathbb{Z}^{n \times n}$ and $d \in \mathbb{Z}^n$ be such that $|\det(B)| = 1$ holds. Then the unique solution to Bx = d is integral.

Proof:

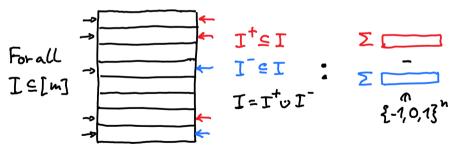
- Let $Q := \operatorname{conv}(P \cap \mathbb{Z}^n) \subseteq P$ be P's integer hull.
- Assuming P ⊈ Q, there must be an inequality a^Tx ≤ β that is valid for Q but not for P, i.e., max{a^Tx : x ∈ P} > β ≥ max{a^Tx : x ∈ Q}.
- ▶ We can assume that the first LP is bounded: otherwise, add $-M \le x_i \le M$ for all $i \in [n]$ for sufficiently large M, which does not destroy TU by property (6).
- Let $x^* \in \mathbb{R}^n$ be an optimal basic solution of the first LP. Note: $x^* \notin Q$.
- ► There exists a subsystem Bx ≤ d of Ax ≤ b consisting of n inequalities such that x^{*} is the unique solution of Bx = d.
- ▶ The lemma implies $x^* \in \mathbb{Z}^n$, and thus $x^* \in Q$, a contradiction.



A Criterion for Establishing Total Unimodularity

Theorem 4.6 – Criterion of Ghoulia-Houri (row version) [Ghouila-Houri, '62] A matrix $A \in \mathbb{R}^{m \times n}$ is TU if and only if each subset $I \subseteq [m]$ of rows can be partitioned into I^+ and I^- such that the following holds: $\sum_{i \in I^+} A_{i,\star} - \sum_{i \in I^-} A_{i,\star} \in \{-1, 0, +1\}^n.$ (1)

Proof: not in this lesson.



Hint: when applying it, we have to consider any $I \subseteq [m]$ and construct I^+ and I^- .

Reminder:

Software for testing:

Combinatorial Matrix Recognition discopt.github.io/cmr/

Matthias Walter

Agenda

Perfect Formulations

- Integral Polyhedra
- Total Unimodularity
- A Criterion for Establishing Total Unimodularity

2 Application: Bipartite Matchings

- Matchings
- Incidence Matrices of Undirected Graphs

3 Application: Network Flows

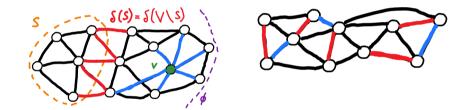
- Incidence Matrices of Directed Graphs / Network Flows
- Maximum Flows & Minimum Cuts
- Shortest Paths

- Laminar Set Families
- Uncrossing
- Intersections of Submodular Polytopes

Cuts & Matchings

Definition - Cuts and shores in undirected graphs

Let G = (V, E) be an undirected graph and $S \subseteq V$ be a node set. The edge set $\delta(S) := \{e \in E : |e \cap S| = 1\}$ is called the **cut induced by** S and S and $V \setminus S$ are called its **shores**. For $v \in V$ we write $\delta(v) := \delta(\{v\})$ for the **star cut**. The cut $\delta(\emptyset) = \delta(V) = \emptyset$ is called **trivial cut**.



Definition – Matching, perfect matching

Let G = (V, E) be an undirected graph. An edge subset $M \subseteq E$ is called a **matching** of G if $|M \cap \delta(v)| \leq 1$ for every node $v \in V$. A matching M with $|M| = \frac{1}{2}|V|$ is called **perfect**.

Matthias Walter

The Matching Problem

Problem – Matching problem

- ▶ Input: Graph G = (V, E) and weights $w \in \mathbb{R}^{E}$.
- **Feasible solutions:** Matchings $M \subseteq E$.

• Goal: Maximize
$$w(M) \coloneqq \sum_{e \in M} w_e$$
.

Variables:

▶
$$x_e \in \{0,1\}$$
 for $e \in E$: $x_e = 1 \iff e$ belongs to the matching.
IP:

$$\max \sum_{e \in E} w_e x_e \tag{2a}$$

s.t.
$$\sum_{e \in \delta(v)} x_e \leq 1$$
 $\forall v \in V$ (2b)

$$x \in \{0,1\}^E \tag{2c}$$

Two alternatives for perfect matchings:

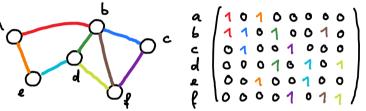
$$\sum_{e \in E} x_e = \frac{1}{2} |V| \qquad (3) \qquad \text{or} \qquad \sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V \quad (4)$$

Matthias Walter

Incidence Matrices of Undirected Graphs

Definition – Incidence matrix of a graph

Let G = (V, E) be a graph. Its **node-edge incidence matrix** is the matrix $M \in \{0, 1\}^{V \times E}$ with $M_{v,e} = 1 \iff v \in e$.



IP formulation for matching:

$$\begin{array}{ll} \max & \displaystyle \sum_{e \in E} w_e x_e & (2a) \\ \text{s.t.} & {\it M} x \leq 1 & (2b) \\ & & \displaystyle x \in \left\{0,1\right\}^E & (2c) \end{array}$$

IP formulation for stable set:

$$\max \sum_{v \in V} w_v x_v \tag{5a}$$

s.t.
$$M^{\mathsf{T}}x \leq 1$$
 (5b)

 $x \in \left\{0,1\right\}^V \tag{5c}$

Incidence Matrices of Undirected Graphs

Theorem 4.18 – Total unimodularity of incidence matrix of a graph

Let G = (V, E) be a graph. Its node-edge incidence matrix $M \in \{0, 1\}^{V \times E}$ is totally unimodular if and only if G is bipartite.

Sufficiency proof:

- Let G = (V, E) be a bipartite graph with bipartition V = A ∪ B and M ∈ {0, +1}^{V×E} be its node-edge incidence matrix.
- ▶ Let $I \subseteq V$ be a subset of *M*'s rows. Each column of $M_{I,\star}$ has at most two 1's.
- ▶ Partitioning *I* into $I^+ := I \cap A$ and $I^- := I \cap B$ satisfies (1) since the two 1's in each column are not both in I^+ and not both in I^- .
- ► The result follows by the criterion of Ghouila-Houri.

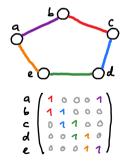
Necessity proof:

- Consider a cycle of odd length.
- Its incidence matrix has determinant ± 2 .

Corollary – Perfect formulations for matching and stable-set

Let G = (V, E) be a bipartite graph. Then IP formulations (2) and (5) are perfect formulations for the matching and stable-set problems, respectively.

Matrix for odd cycle:



Agenda

Perfect Formulations

- Integral Polyhedra
- Total Unimodularity
- A Criterion for Establishing Total Unimodularity

2 Application: Bipartite Matchings

- Matchings
- Incidence Matrices of Undirected Graphs

3 Application: Network Flows

- Incidence Matrices of Directed Graphs / Network Flows
- Maximum Flows & Minimum Cuts
- Shortest Paths

- Laminar Set Families
- Uncrossing
- Intersections of Submodular Polytopes

Incidence Matrices of Directed Graphs

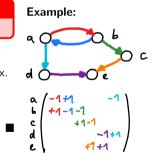
Definition – Incidence matrix of a directed graphLet D = (V, A) be a digraph. Its node-arc incidence matrix is the matrix $M \in \{-1, 0, 1\}^{V \times A}$ defined via $\{-1, 0, 1\}^{V \times A}$ defined via $M_{w,(u,v)} = \begin{cases} -1 & \text{if } w = u, \\ +1 & \text{if } w = v, \\ 0 & \text{otherwise.} \end{cases}$

Theorem 4.9 – Total unimodularity of incidence matrix of a digraph

The node-arc incidence matrix of any digraph is totally unimodular.

Proof:

- Let D = (V, A) be a digraph and $M \in \{-1, 0, +1\}^{V \times A}$ be its incidence matrix.
- Let $I \subseteq V$ be a subset of M's rows.
- Partitioning *I* into $I^+ := I$ and $I^- := \emptyset$ satisfies (1).
- ► The result follows by the criterion of Ghouila-Houri.



Network Flows

Definition – Directed cuts

Let D = (V, A) be a digraph and $S \subseteq V$ be a node set. The arc set $\delta^{out}(S) := \{(u, v) \in A : u \in S, v \notin S\}$ is called the **outgoing cut induced by** S. The set $\delta^{in}(S) := \delta^{out}(V \setminus S)$ is called the **incoming cut induced by** S. For $v \in V$ we write $\delta^{out}(v) := \delta^{out}(\{v\})$ and $\delta^{in}(v) := \delta^{in}(\{v\})$.

Definition – s-t-flow and flow polytope

Let D = (V, A) be a digraph with source and sink nodes $s, t \in V$, and let $u \in \mathbb{R}^{A}_{\geq 0}$ be arc capacities.

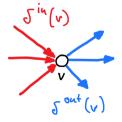
- An s-t-flow is a vector $f \in \mathbb{R}^A$ that satisfies (6).
- The set of all s-t-flows is called the s-t-flow polytope of (D, u).

Problem – Maximum s-t-flow problem

- ▶ Input: Digraph D = (V, A), nodes $s, t \in V$, arc capacities $u \in \mathbb{R}^{A}_{\geq 0}$.
- Feasible solutions: *s*-*t*-flows $f \in \mathbb{R}^A$.
- ► Goal: Maximize flow value $\sum_{a \in \delta^{\text{in}}(t)} f_a \sum_{a \in \delta^{\text{out}}(t)} f_a$.

Flow constraints:

$$\sum_{a \in \delta^{\text{in}}(v)} f_a - \sum_{a \in \delta^{\text{out}}(v)} f_a = 0 \quad \forall v \in V \setminus \{s, t\}, \quad (6a)$$
$$0 \le f_a \le u_a \quad \forall a \in A. \quad (6b)$$



Matthias Walter

Integrality of Flow Polytopes

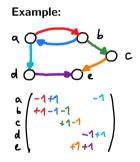
Proposition - Constraint matrix of flow formulation

The constraint matrix for equations (6a) of the *s*-*t*-flow polytope is a submatrix of the node-arc incidence matrix of the digraph (obtained by removing the rows s, t).

Consequence of total unimodularity of node-arc incidence matrices:

Corollary – Integrality of flow polytopes

Let D = (V, A) be a digraph with two nodes $s, t \in V$, and let $u \in \mathbb{Z}_{\geq 0}^{A}$ be **integral** arc capacities. Then the *s*-*t*-flow polytope is integral.



Maximum Flows & Minimum Cuts

Definition - s-t-cut

Let D = (V, A) be a digraph with nodes $s, t \in V$. An *s*-*t*-**cut** is a cut $\delta^{\text{out}}(S)$ induced by a set $S \subseteq V$ with $s \in S$ and $t \notin S$.

Problem – Minimum s-t-cut problem

- ▶ Input: Digraph D = (V, A), source $s \in V$, sink $t \in V$, and arc capacities $u \in \mathbb{R}^{A}_{\geq 0}$.
- **Feasible solutions:** *s*-*t*-cuts $\delta^{out}(S)$.

► **Goal:** Minimize the **capacity**
$$\sum_{a \in \delta^{\text{out}}(S)} u_a$$
 of the cut.

An s-t-cut:

Theorem 4.15 – Max-Flow Min-Cut Theorem

[Ford & Fulkerson, '62]

Let D = (V, A) be a digraph with source $s \in V$, sink $t \in V$ and capacities $u \in \mathbb{R}^{A}_{\geq 0}$. Then the maximum value of an *s*-*t*-flow is equal to the minimum capacity of an *s*-*t*-cut.

Minimum Cost Flows

Definition – b-flows

Let D = (V, A) be a digraph, $u \in \mathbb{R}^{A}_{\geq 0}$ be arc capacities and let $b \in \mathbb{R}^{V}$ be a **demand** vector that satisfies $\sum_{v \in V} b_{v} = 0$. A **b**-flow is a vector $f \in \mathbb{R}^{A}$ that satisfies (7). A *b*-flow for $b = \mathbb{O}_{V}$ is called a **circulation**.

$$\sum_{a \in \delta^{\text{oir}}(v)} f_a - \sum_{a \in \delta^{\text{out}}(v)} f_a = b_v \quad \forall v \in V,$$

$$(7a)$$

$$O \leq f_a \leq v \quad \forall v \in A.$$

$$(7b) \quad \text{Flow conservation:}$$

$$0 \leq f_a \leq u_a \quad orall a \in A.$$

(7b)

Relation to maximum flow problem:

Find largest $b_t = -b_s$ such that feasible *b*-flow with $b_v = 0$ for all $v \neq s, t$ exists.

Problem – Minimum cost b-flow/circulation problem

- Input: Digraph D = (V, A), arc capacities u ∈ ℝ^A_{≥0}, costs c ∈ ℝ^A and demands b ∈ ℝ^V (circulations: b = 0).
- **Feasible solutions:** *b*-flows $f \in \mathbb{R}^A$.
- **Goal:** Minimize costs $\sum_{a \in A} c_a f_a$.

Shortest Paths via *b*-Flows

Problem – Shortest path problem

- Input: Digraph D = (V, A), source s ∈ V, sink t ∈ V and arc lengths ℓ ∈ ℝ^A that are conservative: ℓ(C) := ∑_{t∈C} ℓ_a ≥ 0 for every cycle C in D.
- Feasible solutions: s-t-paths $P \subseteq A$.
- Goal: Minimize the length $\ell(P)$.

Variables:

IP:

▶ $f_a \in \{0,1\}$ for $a \in A$: $f_a = 1 \iff a$ is part of the path or a redundant cycle.

$$\min \sum_{a \in A} \ell_a f_a$$

$$\text{s.t.} \quad \sum_{a \in \delta^{\text{in}}(v)} f_a - \sum_{a \in \delta^{\text{out}}(v)} f_a = \begin{cases} -1 & \text{if } v = s \\ +1 & \text{if } v = t \\ 0 & \text{otherwise} \end{cases}$$

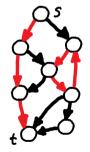
$$f \in \{0, 1\}^A$$

$$(8a)$$

Proposition – Correctness of shortest path formulation

The shortest path problem is correctly modeled by (8).

A feasible solution:



Correctness Proof for Flow Formulation for Shortest Paths

Proposition – Correctness of shortest path formulation

The shortest path problem is correctly modeled by (8).

$$\min \sum_{a \in A} \ell_a f_a$$

$$\text{s.t.} \sum_{a \in \delta^{\text{in}}(v)} f_a - \sum_{a \in \delta^{\text{out}}(v)} f_a = \begin{cases} -1 & \text{if } v = s \\ +1 & \text{if } v = t \\ 0 & \text{otherwise} \end{cases}$$

$$f \in \{0, 1\}^A$$

$$(8c)$$

Proof:

IP:

- Let $b \in \mathbb{R}^V$ be the right-hand side vector of (8b).
- ▶ For each path $P \subseteq A$, $\chi(P)$ is a *b*-flow with $\ell^{\intercal}\chi(P) = \ell(P)$.
- Let $f \in \{0,1\}^A$ be an ℓ -minimum (integral) *b*-flow *f*.
- ▶ By flow conservation, *f* contains an *s*-*t*-path.
- By ℓ-minimality and due to ℓ(C) ≥ 0 for each cycle C, we have that f = χ(P) + χ(C₁) + ··· χ(C_k), where P is an ℓ-shortest s-t-path and C_i are cycles in D with ℓ(C_i) = 0 for i = 1, 2, ..., k.
- Remove cycles to extract P from f. Observe $\ell(P) = \ell^{\mathsf{T}} f$.

A feasible solution:

Perfect Formulation for Shortest Paths

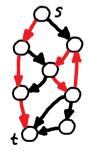
LP relaxation:

$$\begin{array}{ll} \min & \sum_{a \in A} \ell_a f_a & (8a) \\ \text{s.t.} & \sum_{a \in \delta^{\text{in}}(v)} f_a - \sum_{a \in \delta^{\text{out}}(v)} f_a = \begin{cases} -1 & \text{if } v = s \\ +1 & \text{if } v = t \\ 0 & \text{otherwise} \end{cases} & \forall v \in V & (8b) \\ f \in \mathbb{R}^A_{\geq 0} & (8c') \end{cases}$$

Consequence of total unimodularity of node-arc incidence matrices:

Corollary – Perfect shortest-path formulation

Formulation (8) is a perfect formulation for the shortest path problem.



Agenda

Perfect Formulations

- Integral Polyhedra
- Total Unimodularity
- A Criterion for Establishing Total Unimodularity

2 Application: Bipartite Matchings

- Matchings
- Incidence Matrices of Undirected Graphs

3 Application: Network Flows

- Incidence Matrices of Directed Graphs / Network Flows
- Maximum Flows & Minimum Cuts
- Shortest Paths

- Laminar Set Families
- Uncrossing
- Intersections of Submodular Polytopes

Laminar Set Families

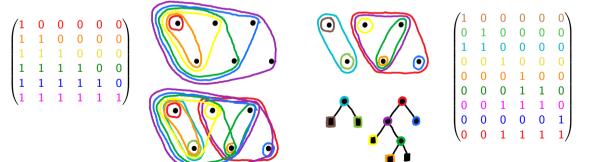
Definition – Laminar set family and incidence matrices

Let *E* be finite and let $\mathcal{L} \subseteq 2^{E}$ be a family of subsets. The **incidence matrix** of \mathcal{L} is the matrix $M \in \{0, 1\}^{\mathcal{L} \times E}$ defined via $M_{A,e} = 1 \iff e \in A$. We call \mathcal{L} laminar if every two elements $A, B \in \mathcal{L}$ satisfy $A \subseteq B$ or $B \subseteq A$ or $A \cap B = \emptyset$.

Lemma – Incidence matrices of two laminar families

[Edmonds, '70]

Let ${\mathcal L}$ be the union of two laminar families. Then its incidence matrix is TU.



Submodular Functions

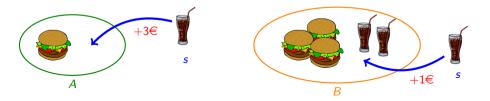
Definitions - Submodular, monotone and normalized set function

Let *E* be a finite ground set. A function $f: 2^E \to \mathbb{R}$ is called

- submodular if $f(S \cap T) + f(S \cup T) \le f(S) + f(T)$ holds for all $S, T \subseteq E$,
- **@ monotone** if $f(S) \leq f(T)$ holds for all $S \subseteq T \subseteq E$, and
- **③ normalized** if $f(\emptyset) = 0$.

Lemma – Diminishing returns

f is submodular if and only if for all $A \subseteq B \subseteq E$ and each $s \in E \setminus B$, we have $f(A \cup \{s\}) - f(A) \ge f(B \cup \{s\}) - f(B).$ (9)



Submodular Functions and Uncrossing

Lemma (Exercise 4.25) – Uncrossing for Submodular Functions

Let $f : 2^E \to \mathbb{R}$ be a submodular normalized function. Let \bar{x} be a vertex of the polyhedron $P = \{x \in \mathbb{R}^E : \sum_{e \in S} x_e \leq f(S) \text{ for all } S \subseteq E\}$. Then \bar{x} satisfies at equality |E| linearly independent inequalities $\sum_{e \in S} x_e = f(S_i)$ for $i = 1, 2, \ldots, |E|$ such that the family $\mathcal{L} := \{S_i \mid i = 1, 2, \ldots, |E|\}$ is laminar.

Proof:

- Consider among all such families \mathcal{L} one that maximizes $\varphi(\mathcal{L}) := \sum_{S \in \mathcal{L}} |S|^2$.
- Suppose there exist sets $S, T \in \mathcal{L}$ that cross.
- Since \bar{x} satisfies the two inequalities with equality and since f is submodular, we obtain

$$f(S) + f(T) = \sum_{e \in S} \bar{x}_e + \sum_{e \in T} \bar{x}_e = \sum_{e \in S \cap T} \bar{x}_e + \sum_{e \in S \cup T} \bar{x}_e \le f(S \cap T) + f(S \cup T) \le f(S) + f(T)$$

- Thus, equality holds throughout.
- Hence, also the inequalities for $S \cap T$ and $S \cup T$ are satisfied with equality.
- We can replace S and T by $S \cap T$ and $S \cup T$ since both coefficient vectors pairs span the same space.
- ► This would increase $\varphi(\mathcal{L})$ due to $|S \cup T|^2 + |S \cap T|^2 |S|^2 |T|^2 = 2 \cdot |S \setminus T| \cdot |T \setminus S| > 0$, a contradiction to the choice of \mathcal{L} .

Intersections of Submodular Polytopes

Definition – Submodular polytope

Let E be a finite ground set and let $f : 2^E \to \mathbb{R}$ be submodular, monotone and normalized. Its **submodular polytope** is defined as

$$P_{\mathsf{sub}}^{(f)} \coloneqq \{ x \in \mathbb{R}^{E}_{\geq 0} : \sum_{e \in S} x_{e} \leq f(S) \quad \forall S \subseteq E \}.$$

Theorem – Intersection of 2 submodular polytopes is integral [Edmonds, '70	0]
Let $f_1, f_2 : 2^E \to \mathbb{R}$ be integer-valued, submodular, monotone and normalized. Then $P_{sub}^{(f_1)} \cap P_{sub}^{(f_2)}$ is an integral polytope.	I-

Proof:

Combine lemmas about laminar families and uncrossing.

Main combinatorial example:

Rank functions of matroids are submodular.

Examples of matroids:

- Linearly independent subsets of a finite set of vectors.
- Sets of at most a certain cardinality.
- Forests in a graph.
- Node sets that can be can be covered by a matching.

Lesson Recap - Any Questions?

Perfect Formulations

- Integral Polyhedra
- Total Unimodularity
- A Criterion for Establishing Total Unimodularity

2 Application: Bipartite Matchings

- Matchings
- Incidence Matrices of Undirected Graphs

3 Application: Network Flows

- Incidence Matrices of Directed Graphs / Network Flows
- Maximum Flows & Minimum Cuts
- Shortest Paths

- Laminar Set Families
- Uncrossing
- Intersections of Submodular Polytopes