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Extended Formulations

Definition (from Lecture 4) — Orthogonal Projection

The orthogonal projection of a set @ C R"? onto R” is

proj«(Q) = {x e R" | 3z € R, (x,2) € Q}

Definition (from Lecture 4) — Extended Formulation and Size

A set of linear inequalities describing Q is called an extended formulation of P :=
proj x(@Q). The size of the extended formulation is the number m of inequalities.

Remarks:

» The concept does not change if we allow affine/linear projections: if x = Tz, we can add these equations
to the extended formulation and orthogonally project onto x.

» Linear optimization over P can be reduced to linear optimization over Q.
» The size ignores the number of variables and equations as these can be reduced to be in O(n+ p):
® While Q is unbounded in some direction that projects to O, we can slice it (= add an equation) without
changing the projection image.
@® Then we can project out variables in order to remove equations.
@ Finally, a full-dimensional pointed polyhedron in dimension p has at least p inequalities, so p cannot be too
large.
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Union of Polyhedra

Goal:
» For polyhedra Py, Ps, ..., Pc, we want to describe the convex hull of their union
P :=conv(PLUPU---U Py).
Geometry:

Observation: P may not be a polyhedron.
This course: We only address the case in which Py, P», ..., Py are bounded.

Book: Technicalities for unbounded case are in Section 4.9 of the book.
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Extended Formulation for Union of Polytopes

Consider k polytopes Py, P>, ..., Px CR" defined via P; := {x € R" : Aix < b;} and
denote by P = conv(P1 U P> U --- U Py) the convex hull of their union.

LP: B
Zy; =y (1a)

i=1
A,-y,-S b,'X,' fori:1,2,...,k (1b)

K
> x=1 (1c)

i=1
x,-eRzoandy,-GR" fori:1,27...,k (1d)
y €R” (1e)

Variables:

» x; = 1 = target point y lies in polytope P;.
» If xi =1 then y; =y, and if x; = 0 then y; = O.

Theorem 4.39 — Extended formulation for union of polytopes [Balas 1974]

Formulation (1) with the projection on y is a perfect extended formulation for P.
Its size is k plus the sum of the number of inequalities of the P;.
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Extended Formulation for Union of Polytopes

Theorem 4.39 — Extended formulation for union of polytopes [Balas 1974]

Formulation (1) with the projection on y is a perfect extended formulation for P.
Its size is k plus the sum of the number of inequalities of the P;.

Proof:
» Let z=(¥,¥1,..., Y X1,...,X2) be in the polyhedron defined by (1).
» We have to show that y lies in P.
» For t such that X; > 0, define the point z' = (y*, y{,..., Vi, X{,--.,xk) with

- Reminder:
e 7 . L fori=t ¢ J1 fori=t
YT ke i {0’ otherwise ’ A {0 otherwise :
dyvi=y (12
> Points z' are feasible for (1) with yf = O for i # t and y{ € P;. i=1
> We verify that Z is a convex combination of these: z = > x:zf Aiyi < bixi  (1b)
t: Xt #0 p
d ox=1 (1c)
» Let y € P and fix a convex combination y = Ef.;l Akyi with y; € P, i=1
S Ai=1land X\i>0fori=12,... k. x=0  (1d)
» For i € [Kk], define (yi, %) = (0,0) if \i =0 and (¥, Xi;) == (\iyi, i) otherwise.
» The constraints of (1) are easily checked. |
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Union of Polytopes and Extended Formulations
What if the P; are given via extended formulations?
> P;=proj,({(y,z) € R™Pi : Ajy + Ciz < b;}).

Modification of (1):
> Ajyi < bix; is replaced by Ajy; + Ciz < bix;.

Corollary — Union of extended formulations

Let P1, Ps, ..., P« C R” be polytopes. Then the convex hull conv(PLUP>U- - -U Px)

of their union has an extended formulation of size k plus the sum of the (minimum) Reminder:
sizes of extended formulations of the P;. k
Remark: ;yl =7 (12)
» Additional +k are due to x; > 0 for each i € {1,2,...,k}. This 4+1 can be Aiyi < bixi  (1b)
skipped if P; is a polytope with dim(P;) > 1. .
d ox=1 (1c)
i=1
x>0 (1d)
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Even Parity Polytope
Task:
n
» Describe the (convex hull Pf., of the) set of x € {0,1}" with >_ x; even.
i=1
» Arises as a substructure in many problems: cyclic routes cross every cut in a

graph an even number of times.
» Optimization is easy: solve over [0,1]" and potentially flip cheapest coordinate.

[Jeroslow, 1975]

Theorem — Perfect formulation for even parity polytope

Plen is described by these (for n > 3 facet-defining) inequalities.

Z X,-JrZ(lfx,-) >1 forall S € {1,2,...,n} with |S| odd (2a)
iEN\S ies
x; € [0,1] fori=1,2,...,n (2b)
Theorem — Disjunctive program for even parity Proof: n
polytope > For k € Z, P .= {x €[0,1]" | 3 xi = k} is integral.
n . 0 2 i=1
Pl has an extended formulation of size O(n?). > Pl = conv(PoU Py U~ U Py la)).
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Even Parity Polytope via Flows

Theorem — Flow Extended Formulation

P.... has an extended formulation of size 4n — 4.

[Carr & Konjevod 2004]

Construction:

S, 35O S S
7
S
7 ?
i=1 i=2 i=3

i=n—1

» Let Q be the s-t-flow polytope of digraph D = (V, A).
» The vertices of Q are incidence vectors of s-t-paths in D.
» Define 7 : R? — R” via

Ya; fori=1
w(y)it==qya +y, fori=23,...,n—1
Vb, for i = n.

» The formulation has one inequality per arc.
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Claim — Projection
7(Q) = Plen holds.




Extended Formulation for Even Subsets

S, 35O, S S S,
7
\;><>< |
”_J 4
i=1 i=2 i=3

i=n—1 i

Il
Bl

Claim — Projection
7(Q) = Plen holds.

Proof of the claim:

m(Q) = m(conv {x(W): W C Alis s-t-path in D })
= conv{m(x(W)): W C Ais s-t-path in D }
=conv {v € {0,1}": Z vi € 27}

i=1
= Penven
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Max-Flow Min-Cut Theorem

Definition — s-t-flow and flow polytope

Let D = (V, A) be a digraph with source and sink nodes s, t € V, and let u € ]Réo
be arc capacities.

> An s-t-flow is a vector f € R” that satisfies (3).
» The set of all s-t-flows is called the s-t-flow polytope of (D, u).

Flow constraints:

Z fo— Z =0 VveV\{st} (3a) Notation:
a€sin(v) acsout(v) out
0°"*(S) denotes all arcs
O<f<u VacA (3b) (u,v) € A that have

Definition — s-t-cut ueSandv¢s.

Let D = (V,A) be a digraph with nodes s,t € V. An s-t-cut is a cut §°*(S) (V) = 6 ({v})
induced by aset SC V withse€ Sand t ¢ S. o '

Theorem — Max-Flow Min-Cut Theorem [Ford & Fulkerson, '62]

Let D = (V, A) be a digraph with source s € V, sink t € V and capacities u € Rgo. Then the maximum
value of an s-t-flow is equal to the minimum capacity of an s-t-cut.
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The Steiner Tree Problem

Problem — Steiner tree problem

> Input: Graph G = (V, E), terminals T C V, edge costs c € RS,.

> Feasible solutions: Subsets F C E, called Steiner trees, such that (V, F)
contains an s-t-path for each pair of terminals s, t € T.

» Goal: Minimize the cost of c(F) =) ./ ce.
Example:
T
—J
Remark:

» After removing edges of zero cost, an optimal Steiner tree is indeed a tree, i.e.,
it is connected and contains no cycles.
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Applications:

Prototype problem for
network design:

» telecommunication
» water/gas supply
» wiring of a chip
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The Undirected Cut Formulation for Steiner Trees

Variables:
» x. € {0,1} for e € E: xe. =1 <= e belongs to Steiner tree.
IP:
min Zcexe (4a)
ecE
st Y xe>1 VSCV:SNT#2,T\S#02 (4b)
ecé(S) E
x € {0,1} (4c)

Proposition — Correctness of undirected cut formulation

Formulation (4) correctly models the Steiner tree problem.

Proof:
» Let F be a Steiner tree, x .= x(F) and let S be as in (4b).
» Choose s€ TNSand t e T\S. There exists an s-t-path P in F.
> It satisfies P N §(S) # @, showing that (4b) is satisfied.

Let x be feasible for (4). We have to show that F := supp(x) connects T.
Suppose there is a pair s,t € T that is not connected in F.

Let S C V be the set of nodes reachable from s in F. Note: t ¢ S.

By construction, F N §(S) = &, contradicting (4b). [
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Undirected Extended Flow Formulation for Steiner Trees
Auxiliary data:
» We fix a root node r € T.
> Let D = (V,A) with A= {(u,v) : {u,v} € E} be the bidirected graph of G.
Variables:
» x. € {0,1} for e € E: xe =1 <= e belongs to Steiner tree.
> fFc{0,1} forac Aand k€ T\ {r}: f* models r-k-flow of value 1.
IP

min Z CeXe (5a)

e€E -1 ifv=r
st. > = > K=0+41 ifv=k VeV, VkeT\{r} (5b)
agsin(v) a€sout(v) 0 otherwise
flo) < Xuwy V(u,v) € A, Vk e T\ {r} (5c)
ke {0,1}" Vke T\ {r} (5d)
x € {0,1}F (5¢)
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Undirected Extended Flow Formulation for Steiner Trees

Theorem — Undirected extended flow formulation for Steiner trees

The LP relaxation of (5) is an extended formulation of the LP relaxation of (4) (via
projection on the x-variables).

Proof strategy:
» Define @ = {(x,f) € RE, x R* : (x, f) satisfies (5b) and (5¢c)}

and P = {x € RS, : x satisfies (4b)}.

» We show P = proj «(Q) by first showing proj«(Q) C P and then showing IP (4):
P proj(Q). (4b) 3 xe>1
» For the first part, we consider some x which is a projection of some vector (x, f) e€s(s)
satisfying (5b) and (5c). We will show that x satisfies (4b). for each S C V
with SNT £ 2

» For the second part, we consider some x € P, satisfying (4b). We will show that dT\S4o
there exists a vector f such that (x, f) satisfy (5b) and (5c¢). an \S#
IP (5):
(5b) r-k-flows f* € R*
of value 1 for each
ke T\{r}

(5C) f(lt(l,v) < X{u,v}
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Cut Relaxation is Contained in Projection of Flow Relaxation

Proof part 1:
» Let (x, f) satisfy (5b) and (5c).
» We show that x satisfies (4b) for each S C V with r ¢ Sand TNS # 2.
» Choose k € T NS and consider the sum of (5b) for this k and all v € S:

D (2 &= > f)=1+ > 0

VES  agdin(v) acsout(v) veS\{k}

IP (4):

(4b) > xe>1
ecé(S)
foreach SC V
with SNT # o
and T\S# o

» Observing that the flow on arcs inside S cancels out, we obtain IP (5):

Z Fr_ ka < ZX{UV}— Z 0 = Z Xe, (5b) r-k-flows f* € R?

acsin(s) a€5out(S) (u,v)€SN(S) agsout(s ecs(S) of value 1 for each

which is (4b). n ke TA\{r}
(5C) f(u v) < X{u,v}
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Projection of Flow Relaxation is Contained in Cut Relaxation

Proof part 2:

|
|

vvyyy

Let x satisfy (4b).

We have to show for each k € T\ {r} that there exists an r-k-flow f* € R%,
with flow value 1 (i.e., f* satisfies (5b)) that respects arc capacities x{,,,; on all
arcs (u,v) € A (i.e., f* satisfies (5c)).

The inequality > 55) Xe > 1 is satisfied for all S C V with r € S and k ¢ S.
Hence, the capacity of the minimum r-k-cut is v > 1.

By the Max-Flow Min-Cut Theorem, there exists an r-k-flow of value ~. IP (4):
Scaling this flow by % yields a flow of value 1 that also respects the capacities (4b) SE;(S)XE >1
(since we scale down). [ | for each S C V
with SNT £ 2
and T\S# o
IP (5):

(5b) r-k-flows f* € R?
of value 1 for each
ke T\{r}

(5C) f(lt(l,v) < X{u,v}
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