UNIVERSITY OF TWENTE.

Extended Formulations (Book Section 4.9)

Preknowledge:

- Polyhedra
- Network Flow Formulations

Topics:

- Extended Formulations Δ
- Extended Formulations via Unions Polyhedra Δ
- Extended Formulations via Flows

Agenda

- Union of Polyhedra
- Application: Even Parity Polytope

Extended Formulations via Flows

- Application: Even Parity Polytope
- Application: Steiner Trees Undirected Cut Formulation
- Application: Steiner Trees Undirected Flow Formulation

Agenda

2 Extended Formulations via Union of Polyhedra

- Union of Polyhedra
- Application: Even Parity Polytope

3 Extended Formulations via Flows

- Application: Even Parity Polytope
- Application: Steiner Trees Undirected Cut Formulation
- Application: Steiner Trees Undirected Flow Formulation

Geometry of Extended Formulations

Extended Formulations

Definition (from Lecture 4) – Orthogonal Projection The orthogonal projection of a set $Q \subseteq \mathbb{R}^{n+\rho}$ onto \mathbb{R}^n is $\operatorname{proj}_x(Q) := \{x \in \mathbb{R}^n \mid \exists z \in \mathbb{R}^{\rho}, (x, z) \in Q\}$

Definition (from Lecture 4) – Extended Formulation and Size

A set of linear inequalities describing Q is called an extended formulation of $P := \text{proj}_{\times}(Q)$. The size of the extended formulation is the number m of inequalities.

Remarks:

- The concept does not change if we allow affine/linear projections: if x = Tz, we can add these equations to the extended formulation and orthogonally project onto x.
- ▶ Linear optimization over *P* can be reduced to linear optimization over *Q*.
- The size ignores the number of variables and equations as these can be reduced to be in O(n + p):
 - **()** While Q is unbounded in some direction that projects to \mathbb{O} , we can slice it (= add an equation) without changing the projection image.
 - **②** Then we can project out variables in order to remove equations.
 - Sinally, a full-dimensional pointed polyhedron in dimension p has at least p inequalities, so p cannot be too large.

Agenda

- Union of Polyhedra
- Application: Even Parity Polytope

3) Extended Formulations via Flows

- Application: Even Parity Polytope
- Application: Steiner Trees Undirected Cut Formulation
- Application: Steiner Trees Undirected Flow Formulation

Union of Polyhedra

Goal:

For polyhedra P_1, P_2, \ldots, P_k , we want to describe the convex hull of their union

Geometry:

 $P := \operatorname{conv}(P_1 \cup P_2 \cup \cdots \cup P_k).$

Observation: *P* may not be a polyhedron.

This course: We only address the case in which P_1, P_2, \ldots, P_k are bounded.

Book: Technicalities for unbounded case are in Section 4.9 of the book.

Matthias Walter

Extended Formulation for Union of Polytopes

Consider k polytopes $P_1, P_2, \ldots, P_k \subseteq \mathbb{R}^n$ defined via $P_i \coloneqq \{x \in \mathbb{R}^n : A_i x \leq b_i\}$ and denote by $P = \operatorname{conv}(P_1 \cup P_2 \cup \cdots \cup P_k)$ the convex hull of their union.

LP:

$$\sum_{i=1}^{k} y_i = y \tag{1a}$$

$$A_i y_i \leq b_i x_i$$
 for $i = 1, 2, \dots, k$ (1b)

$$\sum_{i=1}^{k} x_i = 1 \tag{1c}$$

$$x_i \in \mathbb{R}_{\geq 0} \text{ and } y_i \in \mathbb{R}^n \quad \text{ for } i = 1, 2, \dots, k$$
 (1d)

$$y \in \mathbb{R}^n$$
 (1e)

Variables:

- $x_i = 1 \Rightarrow$ target point y lies in polytope P_i .
- If $x_i = 1$ then $y_i = y$, and if $x_i = 0$ then $y_i = \mathbb{O}$.

Theorem 4.39 – Extended formulation for union of polytopes[Balas 1974]Formulation (1) with the projection on y is a perfect extended formulation for P.Its size is k plus the sum of the number of inequalities of the P_i .

Matthias Walter

Extended Formulation for Union of Polytopes

Theorem 4.39 – Extended formulation for union of polytopes [Balas 1974]

Formulation (1) with the projection on y is a **perfect** extended formulation for P. Its size is k plus the sum of the number of inequalities of the P_i .

Proof:

- Let $\bar{z} = (\bar{y}, \bar{y}_1, \dots, \bar{y}_k, \bar{x}_1, \dots, \bar{x}_2)$ be in the polyhedron defined by (1).
- We have to show that \bar{y} lies in *P*.
- For t such that $\bar{x}_t > 0$, define the point $z^t = (y^t, y_1^t, \dots, y_k^t, x_1^t, \dots, x_k^t)$ with

$$y^t \coloneqq rac{ar y^t}{ar x^t}, \qquad y^t_i \coloneqq egin{cases} rac{ar y_i}{ar x_i} & ext{for } i=t \ 0 & ext{otherwise} \end{cases}, \qquad x^t_i \coloneqq egin{cases} 1 & ext{for } i=t \ 0 & ext{otherwise} \end{cases}$$

• Points
$$z^t$$
 are feasible for (1) with $y_i^t = \mathbb{O}$ for $i \neq t$ and $y_t^t \in P_t$.

• We verify that \bar{z} is a convex combination of these: $\bar{z} = \sum_{t:\bar{x}_t\neq 0} \bar{x}_t z^t$

Reminder:

1.

$$\sum_{i=1}^k y_i = y$$
 (1a)

$$A_i y_i \leq b_i x_i$$
 (1b)

$$\sum_{i=1}^{\kappa} x_i = 1 \qquad (1c)$$

 $x > \mathbb{O}$

- Let $y \in P$ and fix a convex combination $y = \sum_{i=1}^{k} \lambda_k y_i$ with $y_i \in P_i$, $\sum_{i=1}^{k} \lambda_i = 1$ and $\lambda_i \ge 0$ for i = 1, 2, ..., k.
- ▶ For $i \in [k]$, define $(\bar{y}_i, \bar{x}_i) := (\mathbb{O}, 0)$ if $\lambda_i = 0$ and $(\bar{y}_i, \bar{x}_i) := (\lambda_i y_i, \lambda_i)$ otherwise.
- ▶ The constraints of (1) are easily checked.

(1d)

Union of Polytopes and Extended Formulations

What if the P_i are given via extended formulations?

 $\blacktriangleright P_i = \operatorname{proj}_{y}(\{(y, z) \in \mathbb{R}^{n+p_i} : A_i y + C_i z \leq b_i\}).$

Modification of (1):

• $A_i y_i \leq b_i x_i$ is replaced by $A_i y_i + C_i z \leq b_i x_i$.

Corollary – Union of extended formulations

Let $P_1, P_2, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then the convex hull $\operatorname{conv}(P_1 \cup P_2 \cup \cdots \cup P_k)$ of their union has an extended formulation of size k plus the sum of the (minimum) sizes of extended formulations of the P_i .

Remark:

Additional +k are due to x_i ≥ 0 for each i ∈ {1,2,...,k}. This +1 can be skipped if P_i is a polytope with dim(P_i) ≥ 1.

Reminder:

$$\sum_{i=1}^k y_i = y \qquad (1a)$$

$$A_i y_i \leq b_i x_i$$
 (1b)

$$\sum_{i=1}^{k} x_i = 1 \qquad (1c)$$

 $x \ge \mathbb{O}$ (1d)

Even Parity Polytope

Task:

- ▶ Describe the (convex hull P_{even}^n of the) set of $x \in \{0,1\}^n$ with $\sum_{i=1}^n x_i$ even.
- Arises as a substructure in many problems: cyclic routes cross every cut in a graph an even number of times.
- ▶ Optimization is easy: solve over [0, 1]ⁿ and potentially flip cheapest coordinate.

Theorem – Perfect formulation for even parity polytope[Jeroslow, 1975]
$$P_{even}^n$$
 is described by these (for $n \ge 3$ facet-defining) inequalities. $\sum_{i \in N \setminus S} x_i + \sum_{i \in S} (1 - x_i) \ge 1$ for all $S \subseteq \{1, 2, ..., n\}$ with $|S|$ odd (2a) $x_i \in [0,1]$ for $i = 1, 2, ..., n$ (2b)Theorem – Disjunctive program for even parity polytope P_{even}^n has an extended formulation of size $\mathcal{O}(n^2)$. $P_{even}^n = \operatorname{conv}(P_0 \cup P_2 \cup \cdots \cup P_{2 \cdot \lfloor n/2 \rfloor}).$

Agenda

Extended Formulations via Union of Polyhedra

- Union of Polyhedra
- Application: Even Parity Polytope

Extended Formulations via Flows

- Application: Even Parity Polytope
- Application: Steiner Trees Undirected Cut Formulation
- Application: Steiner Trees Undirected Flow Formulation

Even Parity Polytope via Flows

Theorem – Flow Extended Formulation[Carr & Konjevod 2004] P_{even}^n has an extended formulation of size 4n - 4.

Construction:

- Let Q be the s-t-flow polytope of digraph D = (V, A).
- ▶ The vertices of *Q* are incidence vectors of *s*-*t*-paths in *D*.
- Define $\pi : \mathbb{R}^A \to \mathbb{R}^n$ via

$$\pi(y)_i := \begin{cases} y_{a_i} & \text{ for } i = 1\\ y_{a_i} + y_{b_i} & \text{ for } i = 2, 3, \dots, n-1\\ y_{b_i} & \text{ for } i = n. \end{cases}$$

. . .

► The formulation has one inequality per arc.

Claim - Projection $\pi(Q) = P_{\text{even}}^n
 holds.$

Extended Formulation for Even Subsets

Proof of the claim:

$$\pi(Q) = \pi(\operatorname{conv} \{\chi(W) : W \subseteq A \text{ is } s\text{-}t\text{-path in } D \})$$

= conv $\{\pi(\chi(W)) : W \subseteq A \text{ is } s\text{-}t\text{-path in } D \}$
= conv $\{v \in \{0,1\}^n : \sum_{i=1}^n v_i \in 2\mathbb{Z}\}$
= P_{even}^n

Max-Flow Min-Cut Theorem

Definition – s-t-flow and flow polytope

Let D = (V, A) be a digraph with source and sink nodes $s, t \in V$, and let $u \in \mathbb{R}^{A}_{\geq 0}$ be arc capacities.

- An s-t-flow is a vector $f \in \mathbb{R}^A$ that satisfies (3).
- The set of all *s*-*t*-flows is called the **s**-**t**-flow polytope of (D, u).

Flow constraints:

$$\sum_{a \in \delta^{\text{in}}(v)} f_a - \sum_{a \in \delta^{\text{out}}(v)} f_a = 0 \quad \forall v \in V \setminus \{s, t\},$$
(3a) Notation:

$$0 \le f_a \le u_a \quad \forall a \in A.$$
(3b)
$$\begin{cases} \delta^{\text{out}}(S) \text{ denotes all arcs} \\ (u, v) \in A \text{ that have} \\ u \in S \text{ and } v \notin S. \end{cases}$$

Definition – s-t-cut

Let D = (V, A) be a digraph with nodes $s, t \in V$. An *s*-*t*-**cut** is a cut $\delta^{\text{out}}(S)$ induced by a set $S \subseteq V$ with $s \in S$ and $t \notin S$.

$u \in S$ and $v \notin S$.

$$\delta^{\operatorname{out}}(v) \coloneqq \delta^{\operatorname{out}}(\{v\}).$$

Theorem – Max-Flow Min-Cut Theorem

[Ford & Fulkerson, '62]

Let D = (V, A) be a digraph with source $s \in V$, sink $t \in V$ and capacities $u \in \mathbb{R}^{A}_{\geq 0}$. Then the maximum value of an *s*-*t*-flow is equal to the minimum capacity of an *s*-*t*-cut.

Matthias Walter

The Steiner Tree Problem

Problem – Steiner tree problem

- ▶ Input: Graph G = (V, E), terminals $T \subseteq V$, edge costs $c \in \mathbb{R}_{\geq 0}^{E}$.
- Feasible solutions: Subsets F ⊆ E, called Steiner trees, such that (V, F) contains an s-t-path for each pair of terminals s, t ∈ T.
- Goal: Minimize the cost of $c(F) := \sum_{e \in F} c_e$.

Example:

Applications:

▶ ...

Prototype problem for network design:

- ► telecommunication
- ► water/gas supply
- ► wiring of a chip

Remark:

After removing edges of zero cost, an optimal Steiner tree is indeed a tree, i.e., it is connected and contains no cycles. The Undirected Cut Formulation for Steiner Trees

Variables:

►
$$x_e \in \{0, 1\}$$
 for $e \in E$: $x_e = 1 \iff e$ belongs to Steiner tree.
IP:
min $\sum_{e \in E} c_e x_e$ (4a)
s.t. $\sum_{e \in \delta(S)} x_e \ge 1$ $\forall S \subseteq V : S \cap T \neq \emptyset, T \setminus S \neq \emptyset$ (4b)
 $x \in \{0, 1\}^E$ (4c)

Proposition – Correctness of undirected cut formulation

Formulation (4) correctly models the Steiner tree problem.

Proof:

- Let F be a Steiner tree, $x := \chi(F)$ and let S be as in (4b).
- Choose $s \in T \cap S$ and $t \in T \setminus S$. There exists an *s*-*t*-path *P* in *F*.
- It satisfies $P \cap \delta(S) \neq \emptyset$, showing that (4b) is satisfied.
- Let x be feasible for (4). We have to show that $F := \operatorname{supp}(x)$ connects T.
- Suppose there is a pair $s, t \in T$ that is not connected in F.
- Let $S \subseteq V$ be the set of nodes reachable from s in F. Note: $t \notin S$.
- By construction, $F \cap \delta(S) = \emptyset$, contradicting (4b).

Matthias Walter

A Steiner cut:

Undirected Extended Flow Formulation for Steiner Trees

Auxiliary data:

- We fix a root node $r \in T$.
- ▶ Let D = (V, A) with $A := \{(u, v) : \{u, v\} \in E\}$ be the bidirected graph of G.

Variables:

▶ $x_e \in \{0,1\}$ for $e \in E$: $x_e = 1 \iff e$ belongs to Steiner tree.

▶ $f_a^k \in \{0,1\}$ for $a \in A$ and $k \in T \setminus \{r\}$: f^k models r-k-flow of value 1.

IP:

$$\begin{array}{ll} \min & \sum_{e \in E} c_e x_e & (5a) \\ \text{s.t.} & \sum_{a \in \delta^{\text{in}}(v)} f_a^k - \sum_{a \in \delta^{\text{out}}(v)} f_a^k = \begin{cases} -1 & \text{if } v = r \\ +1 & \text{if } v = k \\ 0 & \text{otherwise} \end{cases} & \forall v \in V, \ \forall k \in T \setminus \{r\} & (5b) \\ & f_{(u,v)}^k \leq x_{\{u,v\}} & \forall (u,v) \in A, \ \forall k \in T \setminus \{r\} & (5c) \\ & f^k \in \{0,1\}^A & \forall k \in T \setminus \{r\} & (5d) \\ & x \in \{0,1\}^E & (5e) \end{cases}$$

Undirected Extended Flow Formulation for Steiner Trees

Theorem – Undirected extended flow formulation for Steiner trees

The LP relaxation of (5) is an extended formulation of the LP relaxation of (4) (via projection on the x-variables).

Proof strategy:

- ▶ Define $Q := \{(x, f) \in \mathbb{R}_{\geq 0}^E \times \mathbb{R}^* : (x, f) \text{ satisfies (5b) and (5c)} \}$ and $P := \{x \in \mathbb{R}_{\geq 0}^E : x \text{ satisfies (4b)} \}.$
- We show $P = \operatorname{proj}_{x}(Q)$ by first showing $\operatorname{proj}_{x}(Q) \subseteq P$ and then showing $P \subseteq \operatorname{proj}_{x}(Q)$.
- ► For the first part, we consider some x which is a projection of some vector (x, f) satisfying (5b) and (5c). We will show that x satisfies (4b).
- For the second part, we consider some x ∈ P, satisfying (4b). We will show that there exists a vector f such that (x, f) satisfy (5b) and (5c).

 $\begin{array}{ll} \text{IP (4):} \\ \text{(4b)} & \sum\limits_{e \in \delta(S)} x_e \geq 1 \\ & \text{for each } S \subseteq V \\ & \text{with } S \cap T \neq \varnothing \\ & \text{and } T \setminus S \neq \varnothing \end{array}$

IP (5): (5b) r-k-flows $f^k \in \mathbb{R}^A$ of value 1 for each $k \in T \setminus \{r\}$ (5c) $f^k_{(u,v)} \le x_{\{u,v\}}$ Cut Relaxation is Contained in Projection of Flow Relaxation

Proof part 1:

- ► Let (*x*, *f*) satisfy (5b) and (5c).
- We show that x satisfies (4b) for each $S \subseteq V$ with $r \notin S$ and $T \cap S \neq \emptyset$.
- Choose $k \in T \cap S$ and consider the sum of (5b) for this k and all $v \in S$:

$$\sum_{v \in S} \big(\sum_{a \in \delta^{\mathsf{in}}(v)} f_a^k - \sum_{a \in \delta^{\mathsf{out}}(v)} f_a^k \big) = 1 + \sum_{v \in S \setminus \{k\}} 0$$

• Observing that the flow on arcs inside S cancels out, we obtain

$$1 = \sum_{a \in \delta^{in}(S)} f_a^k - \sum_{a \in \delta^{out}(S)} f_a^k \le \sum_{(u,v) \in \delta^{in}(S)} x_{\{u,v\}} - \sum_{a \in \delta^{out}(S)} 0 = \sum_{e \in \delta(S)} x_e$$

which is (4b).

 $\begin{array}{ll} \text{IP (4):} \\ \text{(4b)} & \sum\limits_{e \in \delta(S)} x_e \geq 1 \\ & \text{for each } S \subseteq V \\ & \text{with } S \cap T \neq \varnothing \\ & \text{and } T \setminus S \neq \varnothing \end{array}$

IP (5): (5b) r-k-flows $f^k \in \mathbb{R}^A$ of value 1 for each $k \in T \setminus \{r\}$ (5c) $f^k_{(u,v)} \leq x_{\{u,v\}}$ Projection of Flow Relaxation is Contained in Cut Relaxation

Proof part 2:

- Let x satisfy (4b).
- ▶ We have to show for each $k \in T \setminus \{r\}$ that there exists an *r*-*k*-flow $f^k \in \mathbb{R}^A_{\geq 0}$ with flow value 1 (i.e., f^k satisfies (5b)) that respects arc capacities $x_{\{u,v\}}$ on all arcs $(u, v) \in A$ (i.e., f^k satisfies (5c)).
- The inequality $\sum_{e \in \delta(S)} x_e \ge 1$ is satisfied for all $S \subseteq V$ with $r \in S$ and $k \notin S$.
- Hence, the capacity of the minimum *r*-*k*-cut is $\gamma \geq 1$.
- By the Max-Flow Min-Cut Theorem, there exists an *r*-*k*-flow of value γ .
- Scaling this flow by $\frac{1}{\gamma}$ yields a flow of value 1 that also respects the capacities (since we scale down).

$$\begin{array}{l} \textbf{IP (4):} \\ \textbf{(4b)} \quad \sum_{e \in \delta(S)} x_e \geq 1 \\ \text{for each } S \subseteq V \\ \text{with } S \cap T \neq \varnothing \\ \text{and } T \setminus S \neq \varnothing \end{array}$$

IP (5):
(5b)
$$r$$
- k -flows $f^k \in \mathbb{R}^A$
of value 1 for each
 $k \in T \setminus \{r\}$
(5c) $f^k_{(u,v)} \leq x_{\{u,v\}}$

Lesson Recap - Any Questions?

- Union of Polyhedra
- Application: Even Parity Polytope

Extended Formulations via Flows

- Application: Even Parity Polytope
- Application: Steiner Trees Undirected Cut Formulation
- Application: Steiner Trees Undirected Flow Formulation