UNIVERSITY OF TWENTE.

General-purpose Cutting Planes (Book Chapter 5)

Matthias Walter

Preknowledge:

- Polyhedra
- Union of Polyhedra ٧
- Simplex Method

Topics:

- Δ Chvátal-Gomory Cutting Planes
- Cutting Planes for the Simplex Tableau Δ
- Split Cutting Planes and Lift-and-Project

2 Split Cutting Planes

- Split Disjunctions and Split Cuts
- Lift-and-Project Cut Generation

Chvátal-Gomory Cutting Planes

- Geometric Idea
- Separation from the Simplex Tableau
- Cut Closure

Geometry of Cutting Planes Geometric Idea

2 Split Cutting Planes

• Split Disjunctions and Split Cuts

• Lift-and-Project Cut Generation

Ohvátal-Gomory Cutting Planes

- Geometric Idea
- Separation from the Simplex Tableau
- Cut Closure

Geometric Idea of Cutting Planes

Definition – Cutting plane

Let $P \subseteq \mathbb{R}^n$ be the LP relaxation of a MIP with integer variables indexed by $I \subseteq [n]$. A **cutting plane** (cut) is an inequality $a^T x \leq \beta$ that (i) is valid for all $x \in P$ with $x_i \in \mathbb{Z}$ for $i \in I$ (equivalently: valid for P's mixed-integer hull), (ii) but is **not** valid for P.

Matthias Walter

Geometry of Cutting PlanesGeometric Idea

2 Split Cutting Planes

- Split Disjunctions and Split Cuts
- Lift-and-Project Cut Generation

Chvátal-Gomory Cutting Planes

- Geometric Idea
- Separation from the Simplex Tableau
- Cut Closure

Split Disjunctions

Definition - Split disjunctions and split inequalities

A split disjunction is a set $D^{(\pi,\pi_0)} := \{x \in \mathbb{R}^n : \pi^{\mathsf{T}}x \leq \pi_0 \lor \pi^{\mathsf{T}}x \geq \pi_0 + 1\}$ for some $\pi \in \mathbb{Z}^n \setminus \{\mathbb{O}\}$ and $\pi_0 \in \mathbb{Z}$. For a polyhedron $P \subseteq \mathbb{R}^n$, a valid inequality for $P \cap D^{(\pi,\pi_0)}$ is called a split inequality (with respect to $D^{(\pi,\pi_0)}$).

Proposition/Definition - Split cut

A split inequality that is not valid for P is a cutting plane, called **split cut**.

Split Cuts via Dual Multipliers

Theorem – Split inequalities via dual multipliers

[Balas, '74]

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ with $A \in \mathbb{R}^{m \times n}$. Then an inequality $a^{\mathsf{T}}x \leq \beta$ is a split inequality with respect to the split disjunction $D^{(\pi,\pi_0)}$ if and only if there exist multipliers $u, v \in \mathbb{R}^m$ and $u_0, v_0 \in \mathbb{R}$ satisfying (1).

Geometry:

Inequality system for dual multipliers:

- $a^{\intercal} = u^{\intercal}A + u_0\pi^{\intercal}$ (1a)
- $\beta \ge u^{\mathsf{T}}b + u_0\pi_0$ (1b)
- $u \geq \mathbb{O}_m, \ u_0 \geq 0$ (1c)
- $a^{\mathsf{T}} = v^{\mathsf{T}} A v_0 \pi^{\mathsf{T}} \qquad (1\mathsf{d})$
- $\beta \geq v^{\mathsf{T}}b v_0(\pi_0 + 1)$ (1e)
- $v \geq \mathbb{O}_m, \ v_0 \geq 0$ (1f)

Split Cuts via Dual Multipliers

Theorem – Split inequalities via dual multipliers

[Balas, '74]

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ with $A \in \mathbb{R}^{m \times n}$. Then an inequality $a^{\mathsf{T}}x \leq \beta$ is a split inequality with respect to the split disjunction $D^{(\pi,\pi_0)}$ if and only if there exist multipliers $u, v \in \mathbb{R}^m$ and $u_0, v_0 \in \mathbb{R}$ satisfying (1).

Proof:

- By definition, a^Tx ≤ β is a split inequality if and only if it is valid for P ∩ D^(π,π₀).
- ► This is equivalent to being valid for $P_1 := \{x \in P : \pi^T x \le \pi_0\}$ and valid for $P_2 := \{x \in P : \pi^T x \ge \pi_0 + 1\}.$
- By strong LP duality, being valid for P_1 is equivalent to

 $\begin{aligned} \max\{a^{\mathsf{T}}x : x \in P_1\} &\leq \beta \\ \Longleftrightarrow \ \max\{a^{\mathsf{T}}x : Ax \leq b, \ \pi^{\mathsf{T}}x \leq \pi_0\} \leq \beta \\ \iff \min\{u^{\mathsf{T}}b + u_0\pi_0 : u^{\mathsf{T}}A + u_0\pi^{\mathsf{T}} = a^{\mathsf{T}}, \ u \in \mathbb{R}^m_{\geq 0}, \ u_0 \in \mathbb{R}_{\geq 0}\} \leq \beta, \end{aligned}$

that is, equivalent to (1a)-(1c).

Similarly, validity for P_2 is equivalent to (1d)–(1f).

Inequality system for dual multipliers:

- $a^{\intercal} = u^{\intercal}A + u_0\pi^{\intercal}$ (1a)
- $\beta \ge u^{\mathsf{T}}b + u_0\pi_0$ (1b)
- $u \geq \mathbb{O}_m, \ u_0 \geq 0$ (1c)
- $a^{\mathsf{T}} = v^{\mathsf{T}} A v_0 \pi^{\mathsf{T}} \qquad (1\mathsf{d})$
- $\beta \geq v^{\mathsf{T}}b v_0(\pi_0 + 1)$ (1e)
- $v \ge \mathbb{O}_m, \ v_0 \ge 0$ (1f)

Cut Generation LP

Corollary – Disjunctive cut generation LP[Balas & Ceria, '93]The separation problem for split cuts for a given disjunction $D^{(\pi,\pi_0)}$ and a given point $\hat{x} \in \mathbb{R}^n$ reduces to solving the cut generation LP (CGLP)max $\hat{x}^{\mathsf{T}}a - \beta$ subject to (1).

Proof:

- By the previous theorem, a^Tx ≤ β is a split inequality if and only if there exist u, u₀, v and v₀ feasible for (1).
- Such a solution has positive objective value if and only if the inequality is violated by x̂.

Remarks:

If a split cut exists, the LP is unbounded. In practice, one adds additional normalization constraints to make it bounded. Examples:

$$u_0 + v_0 = 1,$$
 $\sum_{i=1}^m u_i + \sum_{i=1}^m v_i = 1,$ $-1 \le a_j \le 1 \ \forall j \in [n]$

Inequality system for dual multipliers:

$$a^{\intercal} = u^{\intercal}A + u_0\pi^{\intercal}$$
 (1a)

$$\beta \ge u^{\mathsf{T}}b + u_0\pi_0$$
 (1b)

$$u \geq \mathbb{O}_m, \ u_0 \geq 0$$
 (1c)

 $a^{\mathsf{T}} = v^{\mathsf{T}} A - v_0 \pi^{\mathsf{T}} \qquad (1\mathsf{d})$

$$eta \geq \mathbf{v}^{\intercal} \mathbf{b} - \mathbf{v}_0(\pi_0 + 1)$$
 (1e)

$$v \ge \mathbb{O}_m, \ v_0 \ge 0$$
 (1f)

Geometry of Cutting PlanesGeometric Idea

2 Split Cutting Planes

• Split Disjunctions and Split Cuts

• Lift-and-Project Cut Generation

Ohvátal-Gomory Cutting Planes

- Geometric Idea
- Separation from the Simplex Tableau
- Cut Closure

Geometric Idea of Chvátal-Gomory Cuts

Definition / Proposition – Chvátal-Gomory cut	[Chvátal, '73]
Let $a^{\intercal}x \leq eta$ be an inequality valid for a polyhedron $P \subseteq \mathbb{R}^n$, where	$a \in \mathbb{Z}^n$. Then
$a^\intercal x \leq \lfloor eta floor$	(2)
is valid for all $x \in P \cap \mathbb{Z}^n$ and called a Chvátal-Gomory cut (CG cu	ut).

Proof:

- ► For all $x \in \mathbb{Z}^n$, $a^{\mathsf{T}}x \in \mathbb{Z}$.
- Hence, we can round down the right-hand side of the inequality.

Notation:

By [·] we denote rounding down to the next integer (for vectors: component-wise).

Separation of Chvátal-Gomory Cuts

Theorem – Complexity of CG cut separation [Eisenbrand, '99]
The separation problem for Chvátal-Gomory cuts is coNP-hard.
Theorem – Chvátal-Gomory cut separation for basic solutions [Gomory, '58]
Consider a system in standard form $Ax = b$, $x \ge \mathbb{O}$ with $A \in \mathbb{Z}^{m \times n}$. If a basic solution \hat{x} is not integral, then it is violated by a Chvátal-Gomory cut that can be computed in polynomial time.

Proof:

- ▶ Let $B \subseteq [n]$ be the basis. We multiply with the inverse of the basis matrix: $x_B + A_{\star,B}^{-1}A_{\star,N}x_N = A_{\star,B}^{-1}b$.
- ► Since $\hat{x}_N = \mathbb{O}_N$, the fractional variable $\hat{x}_k \notin \mathbb{Z}$ must be basic. Its row reads $x_k + \sum_{j \in N} d_j x_j = \gamma$ for suitable $d \in \mathbb{R}^n$ and $\gamma = \hat{x}_k$.
- ▶ By adding $-(d_j \lfloor d_j \rfloor)x_j \leq 0$ for all $j \in N$, we obtain $x_k + \sum_{i \in N} \lfloor d_j \rfloor x_j \leq \gamma$.
- Since all coefficients are integral, we can derive the following CG cut: $x_k + \sum_{i=1}^{k} \lfloor d_i \rfloor x_i \leq \lfloor \gamma \rfloor$.
- Due to $\hat{x}_N = \mathbb{O}_N$, we have $\hat{x}_k = \gamma > \lfloor \gamma \rfloor$, i.e., \hat{x} violates the cut.

Characterization of Chvátal-Gomory Cuts

Lemma 5.13 – Chvátal-Gomory cuts via dual multipliers

Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$. Every CG cut $a^{\mathsf{T}}x \leq \lfloor \beta \rfloor$ is equal to $(\lambda^{\mathsf{T}}A)x \leq \lfloor \lambda^{\mathsf{T}}b \rfloor$ for $\lambda \in \mathbb{R}^m$ with $0 \leq \lambda_i < 1$ for all $i \in [m]$ or implied by such a cut and the original inequalities $Ax \leq b$.

Proof:

▶ Let $a^{\mathsf{T}}x \leq \lfloor \beta \rfloor$ be a Chvátal-Gomory cut. Hence, $a^{\mathsf{T}}x \leq \beta$ is valid for *P*.

 $\max\{a^{\mathsf{T}}x:Ax\leq b\}\leq\beta\iff\min\{\mu^{\mathsf{T}}b:\mu^{\mathsf{T}}A=a,\ \mu\in\mathbb{R}^m_{\geq 0}\}\leq\beta\iff\exists\mu\in\mathbb{R}^m_{\geq 0}:\mu^{\mathsf{T}}A=a^{\mathsf{T}},\ \mu^{\mathsf{T}}b\leq\beta$

- ▶ Define $\lambda \in \mathbb{R}^m_{\geq 0}$ via $\lambda_i := \mu_i \lfloor \mu_i \rfloor \in [0, 1)$ for each $i \in [m]$.
- ► Since $\lambda^{\mathsf{T}} A = \mu^{\mathsf{T}} A \lfloor \mu \rfloor^{\mathsf{T}} A = a^{\mathsf{T}} \lfloor \mu \rfloor^{\mathsf{T}} A$ is an integer vector, λ defines the CG cut $\lambda^{\mathsf{T}} A x \leq \lfloor \lambda^{\mathsf{T}} b \rfloor$.
- ▶ The sum of this inequality plus $\lfloor \mu_i \rfloor$ times $A_{i,\star} x \leq b_i$ for all $i \in [m]$ reads

$$\lambda^{\mathsf{T}} A x + \lfloor \mu \rfloor^{\mathsf{T}} A x \leq \lfloor \lambda^{\mathsf{T}} b \rfloor + \lfloor \mu \rfloor^{\mathsf{T}} b.$$

- ► The left-hand side is $\lambda^T A x + \lfloor \mu \rfloor^T A x = (\mu \lfloor \mu \rfloor + \lfloor \mu \rfloor)^T A x = \mu^T A x = a^T x$.
- ► The right-hand side is $\lfloor \lambda^{\mathsf{T}}b \rfloor + \lfloor \mu \rfloor^{\mathsf{T}}b = \lfloor (\mu \lfloor \mu \rfloor)^{\mathsf{T}}b \rfloor + \lfloor \mu \rfloor^{\mathsf{T}}b = \lfloor \mu^{\mathsf{T}}b \lfloor \mu \rfloor^{\mathsf{T}}b \rfloor + \lfloor \mu \rfloor^{\mathsf{T}}b = \lfloor \mu^{\mathsf{T}}b \rfloor \leq \lfloor \beta \rfloor.$
- ► Hence, the given CG cut is implied by $\lambda^{\mathsf{T}}Ax \leq \lfloor \lambda^{\mathsf{T}}b \rfloor$ together with $Ax \leq b$.

Matthias Walter

Finiteness of Chvátal-Gomory Closure

Lemma 5.13 – Chvátal-Gomory cuts via dual multipliers

Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$. Every CG cut $a^{\mathsf{T}}x \leq \lfloor \beta \rfloor$ is equal to $(\lambda^{\mathsf{T}}A)x \leq \lfloor \lambda^{\mathsf{T}}b \rfloor$ for $\lambda \in \mathbb{R}^m$ with $0 \leq \lambda_i < 1$ for all $i \in [m]$ or implied by such a cut and the original inequalities $Ax \leq b$.

Definition – Chvátal-Gomory closure

The **Chvátal-Gomory closure** of a polyedron P is the set of points that satisfy all Chvátal-Gomory cuts.

Theorem 5.14 – Finiteness of Chvátal-Gomory closure

The Chvátal-Gomory closure of a rational polyhedron P is again a rational polyhedron.

Proof:

- By Lemma 5.13 we only need to consider Chvátal-Gomory cuts with multipliers in [0, 1).
- ► Since $\{\lambda^{\mathsf{T}}A \in \mathbb{R}^n : 0 \leq \lambda_i < 1 \ \forall i \in [m]\}$ is a bounded set, the set $\{\lambda^{\mathsf{T}}A \in \mathbb{Z}^n : 0 \leq \lambda_i < 1 \ \forall i \in [m]\}$ is finite.
- ► Hence, only finitely many inequalities are non-redundant.

[Chvátal '73]

Separation of Chvátal-Gomory Cuts via MIP

Variables:

- ▶ $\lambda_i \in [0, 1]$ for each $i \in [m]$: dual multiplier for inequality $A_{i,*}x < b_i$.
- ▶ $a_i \in \mathbb{Z}$ for each $i \in [n]$: coefficient of CG cut.
- $\blacktriangleright \delta \in \mathbb{Z}$: right-hand side of CG cut.

Proposition – Correctness of formulation (3)

Consider the inequality system $Ax \leq b$, a point $\hat{x} \in \mathbb{R}^n$ and a parameter $0 < \varepsilon < 1$. Then formulation (3) yields a CG cut $a^{\mathsf{T}}x \leq \delta$ with maximum violation (with respect to \hat{x}) that is at most $1 - \varepsilon$.

Proof:

- ► A feasible solution (λ, a, δ) yields the valid inequality $a^{\mathsf{T}}x \leq b^{\mathsf{T}}\lambda$ with integral coefficient vector $a \in \mathbb{Z}^n$.
- Due to $\varepsilon > 0$, $\delta \ge b^{\mathsf{T}}\lambda 1 + \varepsilon$ and $\delta \in \mathbb{Z}$ we have $\delta \ge |b^{\mathsf{T}}\lambda|$.
- ▶ The objective (3a) is the violation of $a^{\mathsf{T}}x < \delta$ with respect to \hat{x} .

MIP:

$$\max \sum_{j=1}^{n} \hat{x}_{j} a_{j} - \delta$$
 (3a)

s.t.
$$A^{\mathsf{T}}\lambda - a = \mathbb{O}$$
 (3b)

$$b^{\mathsf{T}}\lambda \qquad -\delta \leq 1-\varepsilon \quad (\mathsf{3c})$$
$$\lambda \qquad \in [0,1]^m \quad (\mathsf{3d})$$

$$\in \left[0,1
ight] ^{m}$$
 (3d)

$$egin{array}{ccc} egin{array}{ccc} &\in \mathbb{Z}'' & (3e) \ &\delta \in \mathbb{Z} & (3f) \end{array} \end{array}$$

Lesson Recap - Any Questions?

Geometry of Cutting Planes Geometric Idea

2 Split Cutting Planes

- Split Disjunctions and Split Cuts
- Lift-and-Project Cut Generation

3 Chvátal-Gomory Cutting Planes

- Geometric Idea
- Separation from the Simplex Tableau
- Cut Closure