
Problem-specific Cutting Planes
(Book Section 7.4)

Topics:

▶ Subtour Formulation of the TSP

▶ Dimension / Facets of the TSP Polytope

▶ Comb Inequalities

Preknowledge:

▶ Polyhedra

▶ Hamiltonian cycles & cuts in graphs
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Traveling Salesperson Problem

Problem – Traveling Salesperson Problem (TSP)

▶ Input: Graph G = (V ,E), edge costs c ∈ RE
≥0.

▶ Feasible solutions: Hamiltonian cycles T ⊆ E , called tours.

▶ Objective: Minimize tour cost c(T ) :=
∑
e∈T

ce .

Goal: drill all holes in shortest time
TSP: find shortest tour through all points in network

Mathematical modelling

Theorem – Hardness of TSP [Karp, ’72]

The Traveling Salesperson Problem is NP-hard.
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Subtour Formulation

Problem – Traveling Salesperson Problem (TSP)

▶ Input: Graph G = (V ,E), edge costs c ∈ RE
≥0.

▶ Feasible solutions: Hamiltonian cycles T ⊆ E , called tours.

▶ Objective: Minimize tour cost c(T ) :=
∑
e∈T

ce .

Variables:

▶ x ∈ {0, 1}E : xe = 1 if and only if e is part of the tour.

IP:

min
∑
e∈E

cexe (1a)

s.t.
∑

e∈δ(v)

xe = 2 ∀v ∈ V (1b)

∑
e∈E [S]

xe ≤ |S | − 1 ∀S ⊂ V , 2 ≤ |S | ≤ |V | − 2 (1c)

xe ∈ {0, 1} ∀e ∈ E (1d)

Subtours:
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Separation Problem

Problem – Separation problem for subtour inequalities

▶ Input: Graph G = (V ,E), vector x̂ ∈ [0, 1]E satisfying the degree constraints.

▶ Goal: Find a violated inequality:
∑

e∈E [S]

x̂e > |S | − 1 (for 2 ≤ |S | ≤ |V | − 2)

or assert that x̂ satisfies all subtour constraints.

Solution:

▶ The separation problem can be reduced to a minimum cut problem:

▶ We subtract
∑

e∈E [S]

x̂ > |S | − 1 from
∑
v∈S

1
2

∑
e∈δ(v)

x̂e = 2 · 1
2
· |S |, which yields

1

2

∑
e∈δ(S)

x̂e < 1 ⇐⇒
∑

e∈δ(S)

x̂e < 2.

▶ Hence, it suffices to find a minimum (nontrivial) cut δ(S) with respect to edge
capacities x̂e .

▶ This can be done in time O(|V | · |E |+ |V |2 + log |V |) time using the algorithm
of Nagomoshi & Ibaraki (’92) and Stoer & Wagner (’97). ■
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The TSP Polytope and its Dimension

Definition – TSP polytope

The TSP polytope of G = (V ,E) is defined as Ptsp(G) := conv{χ(T ) : T tour in G}.

Theorem 7.18 – Dimension of the TSP polytope of a complete graphs [Grötschel & Padberg ’79]

Let Kn = (Vn,En) be the complete graph with n ≥ 3 nodes. Then dim(Ptsp(Kn)) = |En| − |Vn| =
(
n
2

)
− n.

Basis of system (1b):

▶ We assume Vn = {1, 2, . . . , n}.
▶ Let B := δ(1) ∪ {{2, 3}} be the star cut of node 1

plus an edge.

▶ The submatrix indexed by nodes 1, 2 and 3, and
edges {1, 2}, {1, 3} and {2, 3} has full rank.

▶ Adding node i ∈ {4, 5, . . . , n} and connecting it
with a single edge maintains full rank because the
row of the node yields a unit vector.

Proof of upper bound:

▶ Since the variables of B induce an n × n submatrix of full rank, the equations are linearly independent.
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Dimension Proof (continued)

Theorem 7.18 – Dimension of the TSP polytope of a complete graphs [Grötschel & Padberg ’79]

Let Kn = (Vn,En) be the complete graph with n ≥ 3 nodes. Then dim(Ptsp(Kn)) = |En| − |Vn| =
(
n
2

)
− n.

Proof of lower bound using generic equation approach:

▶ Let
∑
e∈E

cexe = γ be an equation that is valid for Ptsp(Kn).

▶ Since the edge set B = δ(1) ∪ {{2, 3}} is a basis, we can combine equations (1b)
linearly such that the coefficients of the combined equation agree with ce for all e ∈ B.

▶ We subtract it from c⊺x = γ, which yields c ′⊺x = γ′ with c ′e = 0 for all e ∈ B.

▶ Consider four arbitrary nodes s, t, u, v ∈ [n]. Let T1 be a tour that traverses these nodes in the order s, t,
v , u (other nodes inbetween allowed). Then T2 := T1 \ {{s, t}, {u, v}} ∪ {{s, v}, {t, u}} is also a tour.

▶ From c ′⊺χ(Ti ) = γ′ for i = 1, 2 we obtain
0 = c ′⊺(χ(T1)− χ(T2)) = c ′{s,t} + c ′{u,v} − c ′{s,v} − c ′{t,u}.

▶ For i ∈ {4, 5, . . . , n}, this implies
0 = c ′{2,i} + c ′{1,3} − c ′{1,i} − c ′{2,3} = c ′{2,i}.

▶ For i , j ∈ {3, 4, . . . , n} with i ̸= j : 0 = c ′{1,2} + c ′{i,j} − c ′{2,i} − c ′{1,j} = c ′{i,j}.

▶ Hence, c ′ = O and thus c is a linear combination of equations from (1b). ■
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Subtour Inequalities Define Facets (1)

Theorem 7.19 – Subtour inequalities define facets of the TSP polytope [Grötschel & Padberg ’79]

Let Kn = (Vn,En) be the complete graph with n ≥ 4 nodes and let S ⊆ V with 3 ≤ |S | ≤ n − 3. Then
inequalities (1c) are facet-defining for Ptsp(Kn).

Proof using generic equation approach:

▶ Let F be a face defined by
∑

e∈E [S]

xe ≤ |S | − 1 and let F̄ be a facet, defined by
∑
e∈E

cexe ≤ γ, with F ⊆ F̄ .

▶ W.l.o.g. we assume 1 ∈ S and 2, 3 ∈ V \ S . Since the edge set B = δ(1) ∪ {{2, 3}} is a basis of the
equation system (1b), we can combine these linearly such that the coefficients of the combined equation
agree with ce for all e ∈ B \ E [S ] and with (ce − 1) for all e ∈ B ∩ E [S ].

▶ We subtract it from c⊺x ≤ γ, which yields the equivalent inequality
c ′⊺x ≤ γ′ with c ′e = 0 for all e ∈ B \ E [S ] and c ′e = 1 for all e ∈ B ∩ E [S ].

▶ For distinct edges {p, q}, {s, t} ∈ E [V \ S ] and r ∈ S \ {1} we consider a
Hamiltonian 1-r -path P in E [S ], a Hamiltonian cycle C in E [V \ S ]
traversing {p, q}, {s, t} and visiting p, q, s and t in that order. Define

T1 := P ∪ C \ {{p, q}} ∪ {{1, p}, {r , q}},
T2 := P ∪ C \ {{p, q}} ∪ {{1, q}, {r , p}}, and

T3 := P ∪ C \ {{s, t}} ∪ {{1, s}, {r , t}}
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Subtour Inequalities Define Facets (2)

Theorem 7.19 – Subtour inequalities define facets of the TSP polytope [Grötschel & Padberg ’79]

Let Kn = (Vn,En) be the complete graph with n ≥ 4 nodes and let S ⊆ V with 3 ≤ |S | ≤ n − 3. Then
inequalities (1c) are facet-defining for Ptsp(Kn).

Tours: T1 := P ∪ C \ {{p, q}} ∪ {{1, p}, {r , q}}, T2 := P ∪ C \ {{p, q}} ∪ {{1, q}, {r , p}}
T3 := P ∪ C \ {{s, t}} ∪ {{1, s}, {r , t}}.

Proof (continued):

▶ Observe χ(Ti ) ∈ F ⊆ F̄ for i = 1, 2, 3.

▶ From c ′(T1) = γ′ = c ′(T2) we obtain −c ′p,q + c ′1,p + c ′r,q = −c ′p,q + c ′1,q + c ′r,p.

▶ From c ′1,p = 0 and c ′1,q = 0 we obtain c ′r,q = c ′r,p
(for each r ∈ S and all p, q ∈ V \ S).

▶ Similarly, c ′(T1) = γ′ = c ′(T3) yields
−c ′p,q + c ′1,p + c ′r,q = −c ′s,t + c ′1,s + c ′r,t .

▶ From c ′1,s = c ′1,p and c ′r,q = cr,t we obtain
c ′p,q = c ′s,t (for every edge pair {p, q}, {s, t}).

▶ From c ′2,3 = 0 we conclude that c ′e = 0 for all e ∈ E [V \ S ]
and, for each s ∈ S , c ′s,t is the same for all t ∈ V \ S .
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Subtour Inequalities Define Facets (3)

Theorem 7.19 – Subtour inequalities define facets of the TSP polytope [Grötschel & Padberg ’79]

Let Kn = (Vn,En) be the complete graph with n ≥ 4 nodes and let S ⊆ V with 3 ≤ |S | ≤ n − 3. Then
inequalities (1c) are facet-defining for Ptsp(Kn).

Proof (continued):
▶ We already proved that c ′e = 0 for all e ∈ E [V \ S ] and, for each s ∈ S , c ′s,t is

the same for all t ∈ V \ S .
▶ For distinct edges {p, q}, {s, t} ∈ E [S ] we consider a Hamiltonian 2-3-path

P in E [V \ S ], a Hamiltonian cycle C in E [S ] traversing {p, q}, {s, t} and
visiting p, q, s and t in that order.

▶ Define T1 := P ∪ C \ {{p, q}} ∪ {{2, p}, {3, q}}
and T2 := P ∪ C \ {{s, t}} ∪ {{2, s}, {3, t}}.

▶ Again, χ(Ti ) ∈ F ⊆ F̄ holds for i = 1, 2.
▶ From c ′(T1) = γ′ = c ′(T2) we obtain

−c ′p,q + c ′2,p + c ′3,q = −c ′s,t + c ′2,s + c ′3,t .
▶ For q = s = 1 we have c ′p,q = c ′s,t = 0 and thus c ′2,p = c ′3,t ,

which proves that c ′e is the same for all e ∈ δ(S) and equal to 0 due to c ′1,2 = 0.
▶ Thus, −c ′p,q = −c ′s,t for all p, q, s, t ∈ S , i.e, c ′⊺x =

∑
e∈E [S]

xe after scaling.

▶ It is easily checked that also γ′ = |S | − 1 holds. ■
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Perfect Simple 2-Matchings

Definition – (Perfect) simple 2-matching

Let G = (V ,E). A subset M ⊆ E of edges is called a simple 2-matching if
every node has degree at most 2 in M. A simple 2-matching M is called perfect if
|M| = |V |.

Remark:

▶ Perfect simple 2-matchings are precisely those edge subsets that consist of
disjoint cycles that cover every node.

▶ The attribute simple refers to the requirement that every edge can be used at
most once.

▶ An IP formulation is given by the degree constraints (1b) and the variable
domains (1d).

A perfect simple 2-matching: A vertex of the LP relaxation:
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2-Matching-Inequalities

A vertex of the LP relaxation:

Blossom inequalities:∑
e∈δ(S)\F

xe +
∑
e∈F

(1− xe) ≥ 1 ∀F ⊆ δ(S), |F | odd, S ⊆ V (2)

Theorem – Perfect formulation for perfect simple 2-matchings [Edmonds ’65]

The formulation consisting of degree constraints (1b), variable bounds (1d) and (2)
is a perfect formulation for perfect simple 2-matchings.

Theorem – Separation problem for (2) [Padberg & Rao ’82]

The separation problem for (2) can be solved in polynomial time.
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Comb Inequalities

Definition – Comb inequalities [Grötschel & Padberg ’79]

A comb inequality (3) is defined by a handle H ⊆ V and and odd number t ≥ 3
of teeth T1,T2, . . . ,Tt ⊆ V satisfying

▶ Teeth are attached to the handle: Ti ∩ H ̸= ∅ for i = 1, 2, . . . , t.

▶ Teeth are not contained in the handle: Ti \ H ̸= ∅ for i = 1, 2, . . . , t.

▶ Teeth are disjoint: Ti ∩ Tj = ∅ for all i ̸= j .

Comb inequality:∑
e∈δ(H)

xe +
t∑

i=1

∑
e∈δ(Ti )

xe ≥ 3t + 1 (3)
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Validity and Facetness of Comb Inequalities

Comb inequality: ∑
e∈δ(H)

xe +
t∑

i=1

∑
e∈δ(Ti )

xe ≥ 3t + 1 (3)

Theorem – Validity and facetness of comb inequalities [Grötschel & Padberg ’79]

Let G = (V ,E) be a graph. Then (3) is valid for Ptsp(G). If G is a complete graph, then it is facet-defining.

Proof of validity:

▶ Let T be a tour and let x be its incidence vector.

▶ Define di (H) := {e ∈ E : e ∩ (Ti ∩ H) ̸= ∅, e ∩ (Ti \ H) ̸= ∅}
▶ Note that the di (H) are disjoint.

▶ We have δ(H) ⊇ d1(H) ∪ d2(H) ∪ · · · ∪ dt(H).

▶ For i ∈ {1, 2, . . . , t} we have |T ∩ δ(Ti )| ≥ 3 or |T ∩ δ(Ti )| = 2.

▶ In the latter case, T contains an edge from Ti \ H to Ti ∩ H.

▶ In any case we have |T ∩ di (H)|+ |T ∩ δ(Ti )| ≥ 3.

▶ Summing up yields
∑

e∈δ(H)

xe +
t∑

i=1

∑
e∈δ(Ti )

xe ≥ 3t.

▶ The left-hand side is even, but 3t is odd, so we can add 1. ■
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Separation of Comb Inequalities

Theorem – Separation of for fixed number of teeth [Carr ’97]

For a fixed number t, the comb inequalities with t teeth can be separated by solving
O(n2t) maximum flow problems.

Theorem – Separation of maximally violated combs [Fleischer & Tardos ’99]

For planar G , one can find a comb inequality that is violated maximally (i.e., by
1/2), if such an inequality exists, in time O(n2 log n).

Theorem – Separaton for fixed handle [Caprara & Letchford ’01]

For a fixed handle H, the separation problem for {0, 1/2}-cuts (all Chvátal-Gomory
cuts with multipliers in {0, 1/2}, a superclass of comb inequalities) can be solved in
polynomial time.

Theorem – Separaton of simple comb inequalities [Letchford & Lodi ’02]

The separation problem for simple comb inequalities (each tooth T has |T∩H| = 1
or |T \ H| = 1) can be solved in polynomial time.

Remark:

The computational
complexity of the
comb separation
problem is still
unknown.
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Generalizations of Combs

Theorem – Clique-tree inequalities are facet-defining
[Grötschel & Pulleyblank ’86]

The clique-tree inequalities generalize subtour and comb inequalities and are facet-
defining for the TSP polytope.

Theorem – Domino-parity inequalities [Letchford ’00]

Domino-parity inequalities generalize comb inequalities and can be separated in
O(n3) if G is planar.
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