UNIVERSITY OF TWENTE.

Problem-specific Cutting Planes (Book Section 7.4)

Matthias Walter

Preknowledge:

- Polyhedra
- Hamiltonian cycles & cuts in graphs

Topics:

- Subtour Formulation of the TSP
- Dimension / Facets of the TSP Polytope Δ
- **Comb Inequalities** Ν

The Subtour Formulation for the TSP

- Subtour Formulation
- Separation Algorithm

2 The TSP Polytope

- Dimension
- Subtour Facets

- 2-Matching Inequalities
- Comb Inequalities
- Further Inequalities

1 The Subtour Formulation for the TSP

- Subtour Formulation
- Separation Algorithm

2 The TSP Polytope

- Dimension
- Subtour Facets

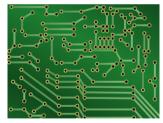
- 2-Matching Inequalities
- Comb Inequalities
- Further Inequalities

Traveling Salesperson Problem

Problem – Traveling Salesperson Problem (TSP)

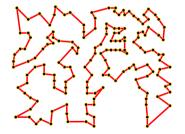
- ▶ Input: Graph G = (V, E), edge costs $c \in \mathbb{R}_{\geq 0}^{E}$.
- **Feasible solutions:** Hamiltonian cycles $T \subseteq E$, called **tours**.
- **Objective:** Minimize tour cost $c(T) := \sum_{e \in T} c_e$.

Goal: drill all holes in shortest time



Mathematical modelling

TSP: find shortest tour through all points in network



Subtour Formulation

Problem – Traveling Salesperson Problem (TSP)

- Input: Graph G = (V, E), edge costs $c \in \mathbb{R}_{\geq 0}^{E}$.
- ▶ Feasible solutions: Hamiltonian cycles $T \subseteq E$, called tours.

• **Objective:** Minimize tour cost
$$c(T) := \sum_{e \in T} c_e$$
.

Variables:

•
$$x \in \{0,1\}^E$$
: $x_e = 1$ if and only if e is part of the tour.

IP:

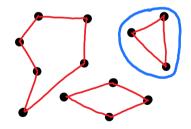
$$\min \sum_{e \in E} c_e x_e \tag{1a}$$

s.t.
$$\sum_{e \in \delta(v)} x_e = 2$$
 $\forall v \in V$ (1b)

$$\sum_{e \in E[S]} x_e \le |S| - 1 \quad \forall S \subset V, \ 2 \le |S| \le |V| - 2 \qquad (1c)$$

$$x_e \in \{0,1\} \quad \forall e \in E$$
 (1d)

Subtours:



Separation Problem

Problem – Separation problem for subtour inequalities

- ▶ Input: Graph G = (V, E), vector $\hat{x} \in [0, 1]^E$ satisfying the degree constraints.
- ▶ Goal: Find a violated inequality: $\sum_{e \in E[S]} \hat{x}_e > |S| 1$ (for $2 \le |S| \le |V| 2$) or assert that \hat{x} satisfies all subtour constraints.

Solution:

▶ The separation problem can be reduced to a minimum cut problem:

• We subtract
$$\sum_{e \in E[S]} \hat{x} > |S| - 1$$
 from $\sum_{v \in S} \frac{1}{2} \sum_{e \in \delta(v)} \hat{x}_e = 2 \cdot \frac{1}{2} \cdot |S|$, which yields

$$\frac{1}{2}\sum_{e\in\delta(S)}\hat{x}_e<1\iff \sum_{e\in\delta(S)}\hat{x}_e<2.$$

- Hence, it suffices to find a minimum (nontrivial) cut δ(S) with respect to edge capacities x̂_e.
- ► This can be done in time O(|V| · |E| + |V|² + log |V|) time using the algorithm of Nagomoshi & Ibaraki ('92) and Stoer & Wagner ('97).

The Subtour Formulation for the TSF

- Subtour Formulation
- Separation Algorithm

2 The TSP Polytope

- Dimension
- Subtour Facets

- 2-Matching Inequalities
- Comb Inequalities
- Further Inequalities

The TSP Polytope and its Dimension

Definition – TSP polytope

The **TSP polytope** of G = (V, E) is defined as $P_{tsp}(G) \coloneqq conv{\chi(T) : T tour in G}$.

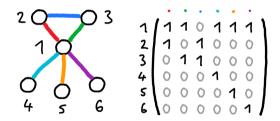
Theorem 7.18 – Dimension of the TSP polytope of a complete graphs [Grötschel & Padberg '79] Let $K_n = (V_n, E_n)$ be the complete graph with $n \ge 3$ nodes. Then dim $(P_{tsp}(K_n)) = |E_n| - |V_n| = \binom{n}{2} - n$.

Basis of system (1b):

- We assume $V_n = \{1, 2, ..., n\}$.
- Let $B := \delta(1) \cup \{\{2,3\}\}$ be the star cut of node 1 plus an edge.
- ► The submatrix indexed by nodes 1, 2 and 3, and edges {1,2}, {1,3} and {2,3} has full rank.
- ► Adding node i ∈ {4,5,..., n} and connecting it with a single edge maintains full rank because the row of the node yields a unit vector.

Proof of upper bound:

• Since the variables of B induce an $n \times n$ submatrix of full rank, the equations are linearly independent.



Dimension Proof (continued)

Theorem 7.18 – Dimension of the TSP polytope of a complete graphs [Grötschel & Padberg '79]

Let $K_n = (V_n, E_n)$ be the complete graph with $n \ge 3$ nodes. Then dim $(P_{tsp}(K_n)) = |E_n| - |V_n| = {n \choose 2} - n$.

Proof of lower bound using generic equation approach:

- Let $\sum_{e \in E} c_e x_e = \gamma$ be an equation that is valid for $P_{tsp}(K_n)$.
- Since the edge set B = δ(1) ∪ {{2,3}} is a basis, we can combine equations (1b) linearly such that the coefficients of the combined equation agree with c_e for all e ∈ B.
- We subtract it from $c^{\mathsf{T}}x = \gamma$, which yields $c'^{\mathsf{T}}x = \gamma'$ with $c'_e = 0$ for all $e \in B$.
- ► Consider four arbitrary nodes $s, t, u, v \in [n]$. Let T_1 be a tour that traverses these nodes in the order s, t, v, u (other nodes inbetween allowed). Then $T_2 := T_1 \setminus \{\{s, t\}, \{u, v\}\} \cup \{\{s, v\}, \{t, u\}\}$ is also a tour.
- From $c'^{\mathsf{T}}\chi(T_i) = \gamma'$ for i = 1, 2 we obtain $0 = c'^{\mathsf{T}}(\chi(T_1) - \chi(T_2)) = c'_{\{s,t\}} + c'_{\{u,v\}} - c'_{\{s,v\}} - c'_{\{t,u\}}.$
- For $i \in \{4, 5, ..., n\}$, this implies $0 = c'_{\{2,i\}} + c'_{\{1,3\}} - c'_{\{1,i\}} - c'_{\{2,3\}} = c'_{\{2,i\}}.$
- ▶ For $i, j \in \{3, 4, \dots, n\}$ with $i \neq j$: $0 = c'_{\{1,2\}} + c'_{\{i,j\}} c'_{\{2,i\}} c'_{\{1,j\}} = c'_{\{i,j\}}$.
- Hence, $c' = \mathbb{O}$ and thus c is a linear combination of equations from (1b).

Subtour Inequalities Define Facets (1)

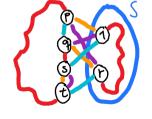
Theorem 7.19 – Subtour inequalities define facets of the TSP polytope [Grötschel & Padberg '79]

Let $K_n = (V_n, E_n)$ be the complete graph with $n \ge 4$ nodes and let $S \subseteq V$ with $3 \le |S| \le n-3$. Then inequalities (1c) are facet-defining for $P_{tsp}(K_n)$.

Proof using generic equation approach:

- ► Let F be a face defined by $\sum_{e \in E[S]} x_e \leq |S| 1$ and let \overline{F} be a facet, defined by $\sum_{e \in E} c_e x_e \leq \gamma$, with $F \subseteq \overline{F}$.
- ▶ W.l.o.g. we assume $1 \in S$ and $2, 3 \in V \setminus S$. Since the edge set $B = \delta(1) \cup \{\{2, 3\}\}$ is a basis of the equation system (1b), we can combine these linearly such that the coefficients of the combined equation agree with c_e for all $e \in B \setminus E[S]$ and with $(c_e 1)$ for all $e \in B \cap E[S]$.
- ► We subtract it from $c^{\mathsf{T}}x \leq \gamma$, which yields the equivalent inequality $c'^{\mathsf{T}}x \leq \gamma'$ with $c'_e = 0$ for all $e \in B \setminus E[S]$ and $c'_e = 1$ for all $e \in B \cap E[S]$.
- ▶ For distinct edges $\{p, q\}, \{s, t\} \in E[V \setminus S]$ and $r \in S \setminus \{1\}$ we consider a Hamiltonian 1-*r*-path *P* in *E*[*S*], a Hamiltonian cycle *C* in *E*[*V* \ *S*] traversing $\{p, q\}, \{s, t\}$ and visiting *p*, *q*, *s* and *t* in that order. Define

$$\begin{split} T_1 &\coloneqq P \cup C \setminus \{\{p,q\}\} \cup \{\{1,p\},\{r,q\}\}, \\ T_2 &\coloneqq P \cup C \setminus \{\{p,q\}\} \cup \{\{1,q\},\{r,p\}\}, \text{ and} \\ T_3 &\coloneqq P \cup C \setminus \{\{s,t\}\} \cup \{\{1,s\},\{r,t\}\} \end{split}$$



Subtour Inequalities Define Facets (2)

Theorem 7.19 – Subtour inequalities define facets of the TSP polytope [Grötschel & Padberg '79]

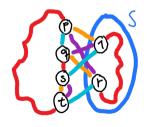
Let $K_n = (V_n, E_n)$ be the complete graph with $n \ge 4$ nodes and let $S \subseteq V$ with $3 \le |S| \le n-3$. Then inequalities (1c) are facet-defining for $P_{tsp}(K_n)$.

Tours: $T_1 := P \cup C \setminus \{\{p,q\}\} \cup \{\{1,p\},\{r,q\}\},\$

 $\begin{array}{l} T_2 \coloneqq P \cup C \setminus \{\{p,q\}\} \cup \{\{1,q\},\{r,p\}\} \\ T_3 \coloneqq P \cup C \setminus \{\{s,t\}\} \cup \{\{1,s\},\{r,t\}\}. \end{array}$

Proof (continued):

- Observe $\chi(T_i) \in F \subseteq \overline{F}$ for i = 1, 2, 3.
- From $c'(T_1) = \gamma' = c'(T_2)$ we obtain $-c'_{p,q} + c'_{1,p} + c'_{r,q} = -c'_{p,q} + c'_{1,q} + c'_{r,p}$.
- From $c'_{1,p} = 0$ and $c'_{1,q} = 0$ we obtain $c'_{r,q} = c'_{r,p}$ (for each $r \in S$ and all $p, q \in V \setminus S$).
- Similarly, $c'(T_1) = \gamma' = c'(T_3)$ yields $-c'_{\rho,q} + c'_{1,\rho} + c'_{r,q} = -c'_{s,t} + c'_{1,s} + c'_{r,t}.$
- From $c'_{1,s} = c'_{1,p}$ and $c'_{r,q} = c_{r,t}$ we obtain $c'_{p,q} = c'_{s,t}$ (for every edge pair $\{p,q\}, \{s,t\}$).
- From $c'_{2,3} = 0$ we conclude that $c'_e = 0$ for all $e \in E[V \setminus S]$ and, for each $s \in S$, $c'_{s,t}$ is the same for all $t \in V \setminus S$.



Subtour Inequalities Define Facets (3)

Theorem 7.19 – Subtour inequalities define facets of the TSP polytope [Grötschel & Padberg '79]

Let $K_n = (V_n, E_n)$ be the complete graph with $n \ge 4$ nodes and let $S \subseteq V$ with $3 \le |S| \le n-3$. Then inequalities (1c) are facet-defining for $P_{tsp}(K_n)$.

Proof (continued):

- ▶ We already proved that $c'_e = 0$ for all $e \in E[V \setminus S]$ and, for each $s \in S$, $c'_{s,t}$ is the same for all $t \in V \setminus S$.
- For distinct edges {p, q}, {s, t} ∈ E[S] we consider a Hamiltonian 2-3-path P in E[V \ S], a Hamiltonian cycle C in E[S] traversing {p, q}, {s, t} a visiting p, q, s and t in that order.
- ▶ Define $T_1 := P \cup C \setminus \{\{p,q\}\} \cup \{\{2,p\},\{3,q\}\}$ and $T_2 := P \cup C \setminus \{\{s,t\}\} \cup \{\{2,s\},\{3,t\}\}.$
- Again, $\chi(T_i) \in F \subseteq \overline{F}$ holds for i = 1, 2.
- From $c'(T_1) = \gamma' = c'(T_2)$ we obtain $-c'_{p,q} + c'_{2,p} + c'_{3,q} = -c'_{s,t} + c'_{2,s} + c'_{3,t}.$
- For q = s = 1 we have $c'_{p,q} = c'_{s,t} = 0$ and thus $c'_{2,p} = c'_{3,t}$, which proves that c'_e is the same for all $e \in \delta(S)$ and equal to 0 due to $c'_{1,2} = 0$.
- ► Thus, $-c'_{p,q} = -c'_{s,t}$ for all $p, q, s, t \in S$, i.e., $c'^{\mathsf{T}}x = \sum_{e \in E[S]} x_e$ after scaling.
- It is easily checked that also $\gamma' = |S| 1$ holds.

(2)

The Subtour Formulation for the TSF

- Subtour Formulation
- Separation Algorithm

2 The TSP Polytope

- Dimension
- Subtour Facets

- 2-Matching Inequalities
- Comb Inequalities
- Further Inequalities

Perfect Simple 2-Matchings

Definition - (Perfect) simple 2-matching

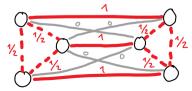
Let G = (V, E). A subset $M \subseteq E$ of edges is called a **simple 2-matching** if every node has degree at most 2 in M. A simple 2-matching M is called **perfect** if |M| = |V|.

Remark:

- Perfect simple 2-matchings are precisely those edge subsets that consist of disjoint cycles that cover every node.
- The attribute simple refers to the requirement that every edge can be used at most once.
- ► An IP formulation is given by the degree constraints (1b) and the variable domains (1d).

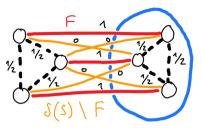
A perfect simple 2-matching:

A vertex of the LP relaxation:



2-Matching-Inequalities

A vertex of the LP relaxation:



Blossom inequalities:

$$\sum_{e \in \delta(S) \setminus F} x_e + \sum_{e \in F} (1 - x_e) \ge 1 \quad \forall F \subseteq \delta(S), \ |F| \text{ odd}, \ S \subseteq V$$
(2)

Theorem – Perfect formulation for perfect simple 2-matchings [Edmonds '65]

The formulation consisting of degree constraints (1b), variable bounds (1d) and (2) is a perfect formulation for perfect simple 2-matchings.

Theorem – Separation problem for (2)	[Padberg & Rao '82]
The separation problem for (2) can be solved in poly	nomial time.
The separation problem for (2) can be solved in polynomial time.	

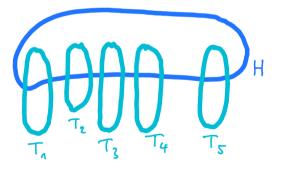
Comb Inequalities

Definition – Comb inequalities

[Grötschel & Padberg '79]

A comb inequality (3) is defined by a handle $H \subseteq V$ and and odd number $t \ge 3$ of teeth $T_1, T_2, \ldots, T_t \subseteq V$ satisfying

- Teeth are attached to the handle: $T_i \cap H \neq \emptyset$ for i = 1, 2, ..., t.
- Teeth are not contained in the handle: $T_i \setminus H \neq \emptyset$ for i = 1, 2, ..., t.
- Teeth are disjoint: $T_i \cap T_j = \emptyset$ for all $i \neq j$.



Comb inequality:

$$\sum_{e \in \delta(\mathcal{H})} x_e + \sum_{i=1}^t \sum_{e \in \delta(\mathcal{T}_i)} x_e \ge 3t + 1$$
(3)

Validity and Facetness of Comb Inequalities

Comb inequality:

$$\sum_{e \in \delta(H)} x_e + \sum_{i=1}^t \sum_{e \in \delta(T_i)} x_e \ge 3t + 1$$
(3)

Theorem – Validity and facetness of comb inequalities

Let G = (V, E) be a graph. Then (3) is valid for $P_{tsp}(G)$. If G is a complete graph, then it is facet-defining.

Proof of validity:

- ► Let *T* be a tour and let *x* be its incidence vector.
- ▶ Define $d_i(H) := \{e \in E : e \cap (T_i \cap H) \neq \emptyset, e \cap (T_i \setminus H) \neq \emptyset\}$
- Note that the $d_i(H)$ are disjoint.
- We have $\delta(H) \supseteq d_1(H) \cup d_2(H) \cup \cdots \cup d_t(H)$.
- ▶ For $i \in \{1, 2, ..., t\}$ we have $|T \cap \delta(T_i)| \ge 3$ or $|T \cap \delta(T_i)| = 2$.
- ▶ In the latter case, *T* contains an edge from $T_i \setminus H$ to $T_i \cap H$.
- In any case we have $|T \cap d_i(H)| + |T \cap \delta(T_i)| \ge 3$.
- Summing up yields $\sum_{e \in \delta(H)} x_e + \sum_{i=1}^{L} \sum_{e \in \delta(T_i)} x_e \ge 3t$.
- ▶ The left-hand side is even, but 3t is odd, so we can add 1.

[Grötschel & Padberg '79]

(3)

Separation of Comb Inequalities

Theorem – Separation of for fixed number of teeth

[Carr '97]

For a fixed number t, the comb inequalities with t teeth can be separated by solving $O(n^{2t})$ maximum flow problems.

Theorem – Separation of maximally violated combs [Fleischer & Tardos '99]

For planar G, one can find a comb inequality that is violated maximally (i.e., by 1/2), if such an inequality exists, in time $O(n^2 \log n)$.

Theorem – Separaton for fixed handle

[Caprara & Letchford '01]

For a fixed handle H, the separation problem for $\{0, 1/2\}$ -cuts (all Chvátal-Gomory cuts with multipliers in $\{0, 1/2\}$, a superclass of comb inequalities) can be solved in polynomial time.

Theorem – Separaton of simple comb inequalities

[Letchford & Lodi '02]

The separation problem for simple comb inequalities (each tooth T has $|T \cap H| = 1$ or $|T \setminus H| = 1$) can be solved in polynomial time.

Remark:

The computational complexity of the comb separation problem is still unknown. Generalizations of Combs

Theorem – Clique-tree inequalities are facet-defining

[Grötschel & Pulleyblank '86]

The **clique-tree inequalities** generalize subtour and comb inequalities and are facetdefining for the TSP polytope.

Theorem – Domino-parity inequalities

[Letchford '00]

Domino-parity inequalities generalize comb inequalities and can be separated in $\mathcal{O}(n^3)$ if G is planar.

Lesson Recap - Any Questions?

The Subtour Formulation for the TSP

- Subtour Formulation
- Separation Algorithm

2 The TSP Polytope

Dimension

1

Subtour Facets

- 2-Matching Inequalities
- Comb Inequalities
- Further Inequalities