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Traveling Salesperson Problem

Problem — Traveling Salesperson Problem (TSP)

» Input: Graph G = (V/, E), edge costs c € ]Rgo.
» Feasible solutions: Hamiltonian cycles T C E, called tours.

» Objective: Minimize tour cost ¢(T) = Y ce.
eceT

TSP: find shortest tour through all points in network
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Theorem — Hardness of TSP [Karp, '72]
The Traveling Salesperson Problem is NP-hard.
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Subtour Formulation

Problem — Traveling Salesperson Problem (TSP)

» Input: Graph G = (V, E), edge costs c € Rgo.
» Feasible solutions: Hamiltonian cycles T C E, called tours.
» Objective: Minimize tour cost ¢(T) = Y ce.

eeT
Variables:
> x €{0,1}5: x. =1 if and only if e is part of the tour. Subtours:
IP:
min Zcexe (1a)
ecE
st Y xe=2 Vv eV (1b)
e€d(v)
ZX5§|S|_1 VSCV,2S|S|§|V|—2 (].C)
ecE[S]
xe € {0,1} Ve€eE (1d)
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Separation Problem

Problem — Separation problem for subtour inequalities

> Input: Graph G = (V, E), vector £ € [0, 1] satisfying the degree constraints.
» Goal: Find a violated inequality: >, X > [S|—1 (for2 < |S| < |V|—2)
e€E[S]
or assert that X satisfies all subtour constraints.

Solution:
» The separation problem can be reduced to a minimum cut problem:
> Wesubtract Y. £>[S|—1from > % > R =2-1-|S|, which yields

ecE[S] veS  e€d(v)
Z Re <1 = Z % < 2.
e66 e€d(S

» Hence, it suffices to find a minimum (nontrivial) cut §(S) with respect to edge
capacities Xe.

» This can be done in time O(|V| - |E| + |V|? + log |V|) time using the algorithm
of Nagomoshi & Ibaraki ('92) and Stoer & Wagner ('97). |
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The TSP Polytope and its Dimension
Definition — TSP polytope
The TSP polytope of G = (V, E) is defined as Piup(G) == conv{x(T): T tour in G}.

Theorem 7.18 — Dimension of the TSP polytope of a complete graphs [Gr6tschel & Padberg '79]

Let K, = (Va, En) be the complete graph with n > 3 nodes. Then dim(Pusp(Kn)) = |En| — |Va| = (5) — n.

Basis of system (1b):

» We assume V, = {1,2,...,n}. 2 3 111 1 1111
» Let B :=§(1) U{{2,3}} be the star cut of node 1 1 2|1 1
plus an edge. 3 11
» The submatrix indexed by nodes 1, 2 and 3, and 4 ) 01 0
edges {1,2}, {1,3} and {2,3} has full rank. O s 0010
> Adding node i € {4,5,...,n} and connecting it 4 s 6 4 1

with a single edge maintains full rank because the
row of the node yields a unit vector.

Proof of upper bound:
» Since the variables of B induce an n x n submatrix of full rank, the equations are linearly independent.
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Dimension Proof (continued)

Theorem 7.18 — Dimension of the TSP polytope of a complete graphs [Grotschel & Padberg '79]

Let K, = (Va, En) be the complete graph with n > 3 nodes. Then dim(Pusp(Kn)) = |En| — |Vl = (5) — n.

Proof of lower bound using generic equation approach:

> Let Y cexe =y be an equation that is valid for Pup(Kn).
eckE

» Since the edge set B = §(1) U {{2,3}} is a basis, we can combine equations (1b)
linearly such that the coefficients of the combined equation agree with c. for all e € B.

» We subtract it from c"x = ~, which yields ¢'"x =+ with ¢, = 0 for all e € B.

» Consider four arbitrary nodes s, t, u, v € [n]. Let T be a tour that traverses these nodes in the order s, t,
v, u (other nodes inbetween allowed). Then T, := Ty \ {{s, t},{u, v}} U {{s, v}, {t,u}} is also a tour.

» From c'Tx(T;) =~ for i = 1,2 we obtain *° ".@ @ weo,
0= C/T(X(Tl) - X(Tz)) = Cés,t} + Cj[u,v} - Cj(s,v} - Cit,u}' [ x °

» Foric {4,5,...,n}, this implies ‘. 4
. / / ’ o % o @ @ 00000 00°°
0="Cpiy + s ~ Cuiy ~ 23y = 2y
> Fori,j € {3,4,...,n} with i # j: 0= {10y +C{ijy — Cla} — Slijy = iy
> Hence, ¢’ = O and thus c is a linear combination of equations from (1b). |
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Subtour Inequalities Define Facets (1)

Theorem 7.19 — Subtour inequalities define facets of the TSP polytope [Grétschel & Padberg '79]

Let K, = (Vh, En) be the complete graph with n > 4 nodes and let S C V with 3 < |S| < n— 3. Then
inequalities (1c) are facet-defining for Piusp(Kn).

Proof using generic equation approach:

» Let F be a face defined by 3 xe <|S|—1 and let F be a facet, defined by 3 cexe <, with F C F.

e€E[S] eckE

» W.lo.g. weassumel € S and 2,3 € V\S. Since the edge set B =4d(1) U {{2,3}} is a basis of the
equation system (1b), we can combine these linearly such that the coefficients of the combined equation
agree with c. for all e € B\ E[S] and with (c. — 1) for all e € BN E[S].

» We subtract it from c¢Tx < +, which yields the equivalent inequality
c'Tx <~" with ¢, =0 forall e€ B\ E[S] and ¢, =1 for all e € BN E[S]. S

» For distinct edges {p, q},{s,t} € E[V\ S] and r € S\ {1} we consider a
Hamiltonian 1-r-path P in E[S], a Hamiltonian cycle C in E[V \ S]
traversing {p, q}, {s, t} and visiting p, g, s and t in that order. Define

©®
3
Ti:=PUC\ {{p,q}} U{{1,p},{r,q}}, - g 9

T2=PUC\{{p,q}} U{{L,q},{r,p}}, and -
Tyi= PUC\ {5, t}} U{{L sk, {r.t}} -
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Subtour Inequalities Define Facets (2)

Theorem 7.19 — Subtour inequalities define facets of the TSP polytope [Grétschel & Padberg '79]

Let K, = (Vh, En) be the complete graph with n > 4 nodes and let S C V with 3 < |S| < n— 3. Then
inequalities (1c) are facet-defining for Piusp(Kn).

Tours: Ti:=PUC\ {{p,q}} U{{l,p}. {r,q}}. To:=PUC\{{p,q}t}U{{L,q},{r,p}}
Ts=PUC\ {{s, t}}U{{1,s},{r,t}}.

Proof (continued):
» Observe x(T;) € F C F for i =1,2,3.
» From ¢'(T1) =+' = ¢/(T2) we obtain —c, ,+ ¢, + ¢/ g = —Cpg+ Clg+ € p
» From ¢, =0 and ¢ , = 0 we obtain ¢/, = ¢/,
(for each r € S and all p,g € V'\ S). &) S
» Similarly, ¢'(T1) =~ = ¢/(Ts) yields ()
—Cpq T ClptClg=—Clitclst e Gle %
» From ¢[, = ¢, and ¢/ 4, = ¢+ we obtain ©
Cp.q = s+ (for every edge pair {p, g}, {s, t}). - 0
> From ¢;3 = 0 we conclude that ¢, = 0 for all e € E[V'\ §] -_ e 6
and, for each s € S, c; ; is the same for all t € V' \ S. =
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Subtour Inequalities Define Facets (3)

Theorem 7.19 — Subtour inequalities define facets of the TSP polytope [Grétschel & Padberg '79]

Let K, = (Vh, En) be the complete graph with n > 4 nodes and let S C V with 3 < |S| < n— 3. Then
inequalities (1c) are facet-defining for Piusp(Kn).

Proof (continued):

>

>

We already proved that ¢, =0 for all e € E[V'\ S] and, for each s € S, c; , is
the same for all t € V'\ S.

For distinct edges {p, q}, {s, t} € E[S] we consider a Hamiltonian 2-3-path

P in E[V \ S], a Hamiltonian cycle C in E[S] traversing {p, g}, {s, t} ai
visiting p, g, s and t in that order. ®
Define Ty .= PU C\ {{p,q}} U{{2,p},{3,q}} (2) /
and T, = PUC\ {{s, t}} U {{2,s}, {3, t}}.

Again, x(T;) € F C F holds for i = 1,2. Q,
From ¢’(T1) =~ = ¢/(T.) we obtain 3 B
—Cpqt Chpt Cg=—Coe+ O+ G

For g =s=1 we have ¢, , = ¢;, =0 and thus ¢; , = ¢3 ,,
which proves that c; is the same for all e € §(S) and equal to 0 due to ¢, = 0.
Thus, —¢, , = —c;, forall p,g,s,t € S, ie, c"™x= 3 x after scaling.

q =
E[s
It is easily checked that also ' = |S| — 1 holds. ecEll
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Perfect Simple 2-Matchings

Definition — (Perfect) simple 2-matching

Let G = (V,E). A subset M C E of edges is called a simple 2-matching if
every node has degree at most 2 in M. A simple 2-matching M is called perfect if
M| = V.

Remark:
» Perfect simple 2-matchings are precisely those edge subsets that consist of
disjoint cycles that cover every node.
» The attribute simple refers to the requirement that every edge can be used at
most once.

» An IP formulation is given by the degree constraints (1b) and the variable
domains (1d).

A perfect simple 2-matching: A vertex of the LP relaxation:
1
Oz —(
[} 47 [ 1 /l' ‘4
4/ ] z ~q (] /2_
Z4 P 4/5\‘
\vd H=———=0
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2-Matching-Inequalities

A vertex of the LP relaxation:

Blossom inequalities:

> %+ (1-x)>1 VFCHS), |Flodd, SCV (2)

ecd(S)\F eeF

Theorem — Perfect formulation for perfect simple 2-matchings [Edmonds ’65]

The formulation consisting of degree constraints (1b), variable bounds (1d) and (2)
is a perfect formulation for perfect simple 2-matchings.

Theorem — Separation problem for (2) [Padberg & Rao '82]

The separation problem for (2) can be solved in polynomial time.
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Comb Inequalities

Definition — Comb inequalities [Grotschel & Padberg '79]

A comb inequality (3) is defined by a handle H C V and and odd number t > 3
of teeth Ty, To,..., T C V satisfying

» Teeth are attached to the handle: ;N H #A @ fori=1,2,...,t
» Teeth are not contained in the handle: T;\ H # @ for i =1,2,...,t
» Teeth are disjoint: T; N T; = @ for all i # j.

Comb inequality:

> xe+Z D xe23t+1

H e€4(H) i=1 e€d(T;)
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Validity and Facetness of Comb Inequalities

Comb inequality:

Z xe+z Z xe >3t+1

e€d(H) i=1 e€d(T;)

Theorem — Validity and facetness of comb inequalities

[Grotschel & Padberg '79]

Let G = (V, E) be a graph. Then (3) is valid for Pwp(G). If G is a complete graph, then it is facet-defining.

Proof of validity:

|

vvyyvyVvVvyywyypy

v

Let T be a tour and let x be its incidence vector.
Define di(H) ={e€ E:en(TiNnH) # @, en(Ti\ H) # &}
Note that the d;(H) are disjoint.
We have §(H) D di(H) U d2(H) U - - - U d:(H).
For i€ {1,2,...,t} we have |[TN4&(T;)| >3 or |[TNT)| =2
In the latter case, T contains an edge from T;\ H to T;N H.
In any case we have |T Nd;(H)| 4+ |T N§(T:)| > 3.
Summing up yields > xe + Xt: > xe > 3t.
e€5(H) i=1ecs(T;)

The left-hand side is even, but 3t is odd, so we can add 1. [ |
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Separation of Comb Inequalities

Theorem — Separation of for fixed number of teeth [Carr "97]

For a fixed number t, the comb inequalities with t teeth can be separated by solving
O(n**) maximum flow problems.

Theorem — Separation of maximally violated combs [Fleischer & Tardos ’99]

For planar G, one can find a comb inequality that is violated maximally (i.e., by
1/2), if such an inequality exists, in time O(n? log n).

Theorem — Separaton for fixed handle [Caprara & Letchford '01]

For a fixed handle H, the separation problem for {0,1/2}-cuts (all Chvatal-Gomory
cuts with multipliers in {0,1/2}, a superclass of comb inequalities) can be solved in
polynomial time.

Theorem — Separaton of simple comb inequalities [Letchford & Lodi '02]

The separation problem for simple comb inequalities (each tooth T has |[TNH| =1
or |T \ H| = 1) can be solved in polynomial time.
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unknown.
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Generalizations of Combs

Theorem — Clique-tree inequalities are facet-defining

[Grotschel & Pulleyblank '86]

The clique-tree inequalities generalize subtour and comb inequalities and are facet-
defining for the TSP polytope.

Theorem — Domino-parity inequalities [Letchford '00]

Domino-parity inequalities generalize comb inequalities and can be separated in
O(n?) if G is planar.
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