
Scheduling with Integer Programming
and Project

Topics:

▶ Original-space models

▶ Extended formulations

▶ Time discretization

Preknowledge:

▶ Polyhedra

Matthias Walter



Agenda

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14



Agenda

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14



Single Machine Scheduling Problem

Definition – Permutation, half times

Consider a set J of jobs J with processing times pj > 0 for each j ∈ J. A schedule
of all jobs on a single machine without idle times is determined by its permutation
π : {1, 2, . . . , n} → J which assigns a position in the schedule to the job. For a
permutation π, the half time vector hπ ∈ RJ specifies when half of each job is
carried out. It is the average of the starting time vector and the completion time
vector.

Proposition – Half times for a permutation

For a permutation π, the half times are given by hπ
π(k) =

∑
ℓ<k

pπ(ℓ) +
1
2
pπ(k).

π(1) π(2) π(3) π(4)

pj

hj

3 2 4 2

1.5 4 7 10

Matthias Walter Scheduling with Integer Programming & Project 1 / 14



Smith’s Rule

Theorem – Smith’s Rule [Smith ’56]

Let w ∈ RJ . A schedule minimizes w(hπ) :=
∑

j∈J wjh
π
j if and only if

wi

pi
≥ wj

pj
holds for all i , j ∈ J with hπ

i < hπ
j . (1)

Proof:

▶ Suppose (1) is not satisfied for some permutation π. Then
there must exist jobs i and j that violate (1) and are
scheduled directly after another.

▶ Let π′ be equal to π, except that π(k) = i , π(k + 1) = j but
π′(k) = j and π′(k + 1) = i hold for a suitable position k.

▶ The objective value change is

w(hπ′
)− w(hπ) = wi (h

π′
i − hπ

i ) + wj(h
π′
j − hπ

j )

= wi

(
pj +

pi
2

− pi
2

)
+ wj

(pj
2

− pi −
pj
2

)
= wipj − wjpi < 0.

▶ This contradicts optimality of π.

▶ Reverse direction: swapping jobs with “=” in (1) does not change the objective value. ■

Example:

π(k) π(k + 1)

i j

wi
1
2
pi wj(pi+

1
2
pj)

π′(k) π′(k + 1)

j i

wj
1
2
pj wi (pj+

1
2
pi )

Matthias Walter Scheduling with Integer Programming & Project 2 / 14



Agenda

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14



Half Time Polytope

Definition – Half time polytope

The half time polytope is the convex hull of all half time vectors

Pht := conv
{
hπ ∈ RJ

+ : π permutation
}
.

Some constraints: ∑
j∈S

pjxj ≥ g(S) for all ∅ ̸= S ⫋ J (2a)

∑
j∈J

pjxj = g(J) (2b)

▶ where g(S) := min
{ ∑

j∈S

pjx
′
j : x

′ ∈ Pht

}
for S ⊆ J.

Matthias Walter Scheduling with Integer Programming & Project 3 / 14



The Value of g(S)

Corollary – Consequence of Smith’s Rule

We have g(S) := min
{ ∑

j∈S

pjx
′
j : x

′ ∈ Pht

}
= 1

2
p(S)2 for every S ⊆ J.

Proof:

▶ We minimize with weights wj := pj for j ∈ S and wj := 0 for j /∈ S .

▶ By Smith’ Rule, we have to sort the jobs by wj/pj , which is either 1 (j ∈ S) or 0 (j /∈ S).
▶ The objective value of any such permutation is

ws1
1
2
ps1 + ws2(ps1 +

1
2
ps2) + · · ·+ wsk (ps1 + · · ·+ psk−1 +

1
2
psk ) + 0

= ps1
1
2
ps1 + ps2(ps1 +

1
2
ps2) + · · ·+ psk (ps1 + · · ·+ psk−1 +

1
2
psk )

= 1
2
(ps1 + ps2 + · · ·+ psk )

2 = 1
2
p(S)2. ■

Corollary – Validity of inequalities

Every half time vector hπ satisfies (2).

Proof:

▶ The ≥-inequalities are satisfied by definition.

▶ The minimum in g(J) is attained by all hπ, so (2b) holds. ■

Constraints:

(2a):
∑
j∈S

pjxj ≥ g(S)

∀∅ ̸= S ⫋ J

(2b):
∑
j∈J

pjxj = g(J)

Matthias Walter Scheduling with Integer Programming & Project 4 / 14



Supermodularity of g

Lemma – supermodularity

g = 1
2
p(S)2 is supermodular, i.e., g(S∩T )+g(S∪T ) ≥ g(S)+g(T ) ∀S ,T ⊆ J.

Proof:

g(S ∩ T ) + g(S ∪ T ) = 1
2
p(S ∩ T )2 + 1

2
p(S ∪ T )2 = 1

2
p(S ∩ T )2 + 1

2

(
p(S \ T ) + p(T \ S) + p(S ∩ T )

)2
= 2

2
p(S ∩ T )2 + 1

2
p(S \ T )2 + 1

2
p(T \ S)2 + p(S \ T ) · p(T \ S)

+ p(S \ T ) · p(S ∩ T ) + p(T \ S) · p(S ∩ T )

= 1
2
p(S)2 + 1

2
p(T )2 + p(S \ T ) · p(T \ S) ≥ g(S) + g(T ). ■

Lemma – Uncrossing

Let x ∈ RJ satisfy (2) for S ∪ T and for S ∩ T , and assume it satisfies (2) for S and for T with equality.
Then S ⊆ T or T ⊆ S .

Proof:

▶ Coefficient-wise comparison, the assumptions and the proof above imply:

0 =
∑

j∈S∩T

pjxj +
∑

j∈S∪T

pjxj −
∑
j∈S

pjxj −
∑
j∈T

pjxj ≥ g(S ∩ T ) + g(S ∪ T )− g(S)− g(T ) = p(S \ T )p(T \ S).

Matthias Walter Scheduling with Integer Programming & Project 5 / 14



Perfect Formulation for the Half Time Polytope

Theorem – Half time polytope [Queyranne ’91]

The half time polytope is the set of vectors x ∈ RJ that satisfy (2).

Proof:

▶ Let x ∈ RJ be a vertex of (2).

▶ Hence, there exist (at least) n tight constraints (2) corresponding to sets
S1, S2, . . . , Sn ⊆ J.

▶ By the uncrossing lemma, these sets form a chain, i.e., S1 ⫋ S2 ⫋ · · · ⫋ Sn.

▶ Since S1 ̸= ∅, we have Sk = {j1, j2, . . . , jk} for all k ∈ {1, 2, . . . , n}, where
J = {j1, j2, . . . , jn}.

▶ Tightness of the inequalities yields pj1xj1 = g({j1}) = 1
2
p2
j1 and thus xj1 =

1
2
pj1 .

▶ For S2 we have pj2xj2 = g({j1, j2})− g({j1}) follows.
▶ By induction, also xjk =

∑
i<k

pji
1
2
pjk follows for k ∈ {2, 3, . . . , n}.

▶ We conclude that x is a half time vector. ■

Matthias Walter Scheduling with Integer Programming & Project 6 / 14



Separation Problem

Reminder:
∑

j∈S pjxj ≥ min{
∑

j∈S pjx
′
j : x

′ ∈ Pht} for all S ⊆ J (2)

Theorem – Separation of inequalities [Queyranne ’91]

The separation problem for (2) can be solved in O(n log n) time.

Proof:

▶ A point x̂ ∈ RJ violates (2a) if and only if there exists a set S ⊆ J with

Γ(S) := g(S)−
∑
j∈S

pj x̂j > 0.

▶ Add an element k /∈ S to S yields

Γ(S ∪ {k}) = 1
2
p(S ∪ {k})2 −

∑
j∈S∪{k}

pj x̂j

= 1
2
p(S)2 + p(S)pk +

1
2
p2
k −

∑
j∈S

pj x̂j − pk x̂k

= Γ(S) + pk(p(S) +
1
2
pk − x̂k).

▶ Thus, if S is a maximizer and k /∈ S , this implies p(S) + 1
2
pk − x̂k ≤ 0, which is

equivalent to x̂k ≥ p(S) + 1
2
pk .

Matthias Walter Scheduling with Integer Programming & Project 7 / 14



Separation Problem

Theorem – Separation of inequalities [Queyranne ’91]

The separation problem for (2) can be solved in O(n log n) time.

Proof (continued):

▶ Similarly, removing an element k ∈ S yields

Γ(S \ {k}) = 1
2
p(S \ {k})2 −

∑
j∈S\{k}

pj x̂j

= 1
2
p(S)2 − 1

2
p2
k − p(S \ {k})pk −

∑
j∈S

pj x̂j + pk x̂k

= Γ(S) + pk(− 1
2
pk − p(S \ {k}) + x̂k)

▶ Thus, if S is a maximizer and k ∈ S , this implies − 1
2
pk − p(S \ {k}) + x̂k ≤ 0,

which is equivalent to x̂k ≤ p(S)− 1
2
pk .

▶ Hence, S is a maximizer if and only if x̂k ≤ p(S) ⇐⇒ k ∈ S holds for all k ∈ J.

▶ This shows that x̂j ≤ x̂k and k ∈ S imply j ∈ S .

▶ Assuming that the jobs are J = {1, 2, . . . , n} with x̂1 ≤ x̂2 ≤ · · · ≤ x̂n, we only
have to test violation for sets Sk := {1, 2, . . . , k} for k = 1, 2, . . . , n − 1. ■

Matthias Walter Scheduling with Integer Programming & Project 8 / 14



Agenda

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14



Extended Formulation

Variables:
▶ xj ∈ R for j ∈ J denotes the half time for job j .
▶ yi,j ∈ {0, 1} for i , j ∈ J, i ̸= j , indicates whether job i is scheduled before job j

(yi,j = 1) or not (yi,j = 0).

Constraints:

1
2
pj +

∑
i∈J\{j}

piyi,j = xj ∀j ∈ J (3a)

yi,j + yj,i = 1 ∀i , j ∈ J, i ̸= j (3b)

yi,j ≥ 0 ∀i , j ∈ J, i ̸= j (3c)

Lemma – Isomorphism to cube

The feasible region of (3) is affinely isomorphic to a cube of dimension
(
n
2

)
.

In particular, all vertices have binary y -entries.

Proof:
▶ Eliminate the x-variables since they are just determined by (3a).
▶ Eliminate all yi,j -variables for i > j since they are determined by (3b).
▶ What remains is 0 ≤ yi,j ≤ 1 for all i , j ∈ J with i < j . ■

Matthias Walter Scheduling with Integer Programming & Project 9 / 14



Extended Formulation

Theorem – Extended formulation for half time polytope [Wolsey ’80s]

The half time polytope has an extended formulation of size O(n2).

Proof:

▶ Let Q denote the polytope defined by (3).

▶ Each half time vector has a preimage by setting yi,j = 1 if and only if hi < hj .

▶ It remains to show that every vertex (x , y) of Q (which has binary y -entries due
to the lemma) satisfies x ∈ Pht.

▶ Let D = (J,A) be the digraph on node set J with (i , j) ∈ A ⇐⇒ yi,j = 1.

▶ If D contains no directed cycle, then it corresponds to a schedule, and x is its
half time vector.

▶ Assume that D contains a directed cycle. Since for every {i , j}, either (i , j) ∈ A
or (j , i) ∈ A holds, D must even contain a directed cycle of length 3.

Matthias Walter Scheduling with Integer Programming & Project 10 / 14



Extended Formulation

Reminder: xj =
1
2
pj +

∑
i∈J\{j} piyi,j (3a)

Proof (continued):

▶ Consider the cycle C = {(i , j), (j , k), (k, i)} ⊆ A.

▶ If we replace the arc (i , j) by (j , i), we obtain the new vector x i,j ∈ RJ with

x i,j
ℓ − xℓ =


pj if ℓ = i ,

−pi if ℓ = j ,

0 otherwise,

and similar formulas hold for x j,k (replacing (j , k) by (k, j)) and xk,i (replacing (k, i) by (i , k)).

▶ We obtain(
pk(x

i,j
ℓ − xℓ) + pi (x

j,k
ℓ − xℓ) + pj(x

k,i
ℓ − xℓ)

)
/

(
pi + pj + pk

)
= 0 ℓ = 1, 2, . . . , n

and thus
pk

pi + pj + pk
x i,j
ℓ +

pi
pi + pj + pk

x j,k
ℓ +

pj
pi + pj + pk

xk,i
ℓ = x ,

which shows that x is a convex combination of other feasible solutions, and thus not a vertex of the
projection. ■

Matthias Walter Scheduling with Integer Programming & Project 11 / 14



Agenda

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14



Time Discretization

Idea:
▶ To avoid continuous variables, we try to model the problem with only binary

variables.
▶ We discretize the allowed starting times, e.g., sj ∈ T := {0, 1, 2, . . . ,T}.
▶ In general this is an approximation, but not here due to pj ∈ Z.

Variables:
▶ yj,t ∈ {0, 1} for (j , t) ∈ J × T : yj,t = 1 ⇐⇒ job j starts at time t.

Visualization:

Matthias Walter Scheduling with Integer Programming & Project 12 / 14



Time Discretization Formulation

Variables:

▶ yj,t ∈ {0, 1} for (j , t) ∈ J × T : yj,t = 1 ⇐⇒ job j starts at time t.

IP:

min
∑
j∈J

∑
t∈T

wj(t +
1
2
pj)yj,t (4a)

s.t.
∑
t∈T

yj,t = 1 ∀j ∈ J (4b)

yj,t + yj′,t′ ≤ 1 ∀(j , t), (j ′, t′) ∈ J × T : j ̸= j ′, t′ ∈ (t − pj′ , t + pj) (4c)

yj,t ∈ {0, 1} ∀(j , t) ∈ J × T (4d)

Proposition – Correctness of time-discretized formulation

Formulation (4) correctly models the minimum weight half time scheduling problem.

Proof:

▶ (4a) is correct: yj,t = 1 means that j starts at t and thus is half done at t + 1
2
pj .

▶ (4b) ensures that each job is started exactly once.

▶ (4c) ensures that jobs j and j ′ do not overlap. ■
Matthias Walter Scheduling with Integer Programming & Project 13 / 14



Agenda

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14



Multiple Sub-Jobs on Different Matchines

Assignment 5 – Project

We consider a job shop scheduling problem with the following input data:

▶ Number m of machines machines = {1, 2, . . . ,m}.
▶ List jobs of jobs.

▶ Processing times processingTimes[k, j ] ∈ Z indicating the processing time of job j on machine k.

The goal is to schedule each job j ∈ jobs on every machine m ∈ machines such that

▶ each machine can only run one job at a time,

▶ each started job runs until it is completed,

▶ a job on machine m ≥ 1 can only start once it is completed on machine m − 1.

▶ among all such schedules, the overall makespan (i.e., time until all jobs on machine m are completed)
is minimized.

The task of this exercise is to create two implementations of MIP models that tackle this problem. These
can be of completely different types, but they can also be a base model as well as the same model augmented
with problem-specific cutting planes. Also price-and-branch methods (i.e., only price for the root LP) are
allowed despite them being heuristic.

Matthias Walter Scheduling with Integer Programming & Project 14 / 14



Lesson Recap – Any Questions?

1 Single Machine Scheduling
Single Machine Scheduling Problem
Original Space Description
Extended Formulation
Time Discretization

2 Project (Last Assignment)
Description

Matthias Walter Scheduling with Integer Programming & Project – / 14


